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This lecture note is based on the HKUST MATH 2431 lecture notes by Prof. Bao, Zhigang (Spring 2023-24). To clarify certain
topics, I have also included material from the textbook ”Probability and Random Processes” (Third Edition) by G. Grimmett and
D. Stirzaker. The chapters follow the textbook’s structure.
Some proofs are written by myself, as they are not found in either the lecture notes or the textbook. These may contain errors. If
you notice any, you likely possess a strong understanding of the topic or a keen eye for detail. ;)
This course requires a co-requisite in multivariable calculus (MATH 2011 and MATH 2023 for HKUST students). However, it
is strongly recommended to be familiar with multivariable calculus beforehand, as it is used early in the course. Knowledge of
mathematical analysis is also very helpful.
If any topics are unclear or not well explained, it is likely due to my non-mathematics background. ;)

Notations Meaning
N+ Set of positive integers
N Set of natural numbers
Z Set of integers
Q Set of rational numbers
R Set of real numbers
∅ Empty set
Ω Sample space / Entire set
ω Outcome

F ,G,H σ-field / σ-algebra
A,B,C, · · · Events

A∁ Complement of events
P Probability measure
X Random variable

B(R) Borel σ-field of R
fX PMF/PDF of X
FX CDF of X
1A Indicator function
E Expectation
ψ Conditional expectation

u,v,w, · · · Vector
A,B,C, · · · Matrix

X Random vector
GX Probability generating function of X
MX Moment generating function of X
ϕ CF / PDF of X ∼ N(0, 1)
Φ CDF of X ∼ N(0, 1)

(a) Notations

Abbreviations Meaning
CDF Cumulative distribution function
JCDF Joint cumulative distribution function
PMF Probability mass function
JPMF Joint probability mass function
PDF Probability density function
JPDF Joint probability density function
PGF Probability generating function
MGF Moment generating function
CF Characteristic function
JCF Joint characteristic function
i.i.d. independent and identically distributed

WLLN Weak Law of Large Numbers
SLLN Strong Law of Large Numbers
CLT Central Limit Theorem
BCI Borel-Cantelli Lemma I
BCII Borel-Cantelli Lemma II
i.o. infinitely often
f.o. finitely often
a.s. almost surely

(b) Abbreviations

Definition 0.1. This is definition.

Remark 0.1.1. This is remark.

Lemma 0.2. This is lemma.

Proposition 0.3. This is proposition.

Theorem 0.4. This is theorem.

Claim 0.4.1. This is claim.

Corollary 0.5. This is corollary.

Example 0.1. This is example.
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Chapter 1

Events and their probabilities

1.1 Fundamental terminologies

In everyday life, we often perceive the future as largely unpredictable. This belief is reflected in our understanding of random
phenomena, to which we assign both quantitative and qualitative meanings.
We start with some basic terminology.

Definition 1.1. A sample space is the set of all outcomes of an experiment and is denoted by Ω. Outcomes are denoted by ω.

Example 1.1. For a coin flip, the sample space is Ω = {H,T}.

Example 1.2. For a die roll, the sample space is Ω = {1, 2, 3, 4, 5, 6}.

Example 1.3. For the lifetime of a bulb, the sample space is Ω = [0,∞).

Example 1.4. For two coins flipping, the sample space is Ω = {(H,H), (H,T ), (T,H), (T, T )}.

Many statements in probability take the form ”the probability of event A is p,” where the events typically include certain elements
of the sample space.

Definition 1.2. An event is a subset of the sample space. Outcomes are elementary events.

Remark 1.2.1. Not every subset of Ω must be considered an event. However, we will not address this issue at present.

Example 1.5. For a dice roll, the sample space is Ω = {1, 2, · · · , 6}. An example of an event is rolling an even number: A =
{2, 4, 6}.

Remark 1.2.2. If only the outcome ω = 2 is given, then there are many events that could result in this outcome. For example,
{2}, {2, 4}, etc.

Definition 1.3. The complement of a subset A is the set A∁, which contains all elements in the sample space Ω that are not in
A.

We can define a collection of subsets of the sample space.

Definition 1.4. A field F is any collection of subsets of Ω which satisfies the following conditions:

1. If A ∈ F , then A∁ ∈ F .

2. If A,B ∈ F , then A ∪B ∈ F and A ∩B = (A∁ ∪B∁)∁ ∈ F . (Closed under finite unions or intersections)

3. ∅ ∈ F and Ω = A ∪A∁ ∈ F .

5



6 CHAPTER 1. EVENTS AND THEIR PROBABILITIES

We are particularly interested in σ-fields, which are closed under countably infinite unions.

Definition 1.5. A σ-field (or σ-algebra) F is any collection of subsets of Ω which satisfies the following conditions:

1. If A ∈ F , then A∁ ∈ F .

2. If A1, A2, · · · ∈ F , then
⋃∞

i=1Ai ∈ F . (Closed under countably infinite unions)

3. ∅ ∈ F and Ω = A ∪A∁ ∪ · · · ∈ F .

Remark 1.5.1. From this point onwards, F will denote the σ-field.

Example 1.6. Smallest σ-field: F = {∅,Ω}.

Example 1.7. If A is any subset of Ω, then F = {∅, A,A∁,Ω} is a σ-field.

Example 1.8. Largest σ-field: Power set of Ω: 2Ω = {0, 1}Ω := {All subsets of Ω}.
When Ω is infinite, the power set is too large a collection for probabilities to be assigned reasonably.

Remark 1.5.2. The following two formulae are particularly useful:

(a, b) =

∞⋃
n=1

[
a+

1

n
, b− 1

n

]
[a, b] =

∞⋂
n=1

[
a− 1

n
, b+

1

n

]

1.2 Probability measure

We wish to discuss the likelihood of the occurrence of events.
Now that we have defined some fundamental terminologies, we can define probability.

Definition 1.6. A measurable space (Ω,F) is a pair comprising a sample space Ω and a σ-field F .
A measure µ on a measurable space (Ω,F) is a function µ : F → [0,∞] satisfying:

1. µ(∅) = 0.

2. If Ai ∈ F for all i and they are disjoint (Ai ∩Aj = ∅ for all i ̸= j), then µ(
⋃∞

i=1Ai) =
∑∞

i=1 µ(Ai). (Countable additivity)

A probability measure P is a measure with P(Ω) = 1.

You might wonder, ”Isn’t this just probability?” The probability we are familiar with is indeed a probability measure, which we
will define shortly. However, there exist other measures that satisfy the definition of a probability measure, such as the risk-neutral
measure.
The following examples are not probability measures:

Example 1.9. Lebesgue measure: µ((a, b)) = b− a, Ω = R.

Example 1.10. Counting measure: µ(A) = #{A}, Ω = R.

We can combine a measurable space and a measure to form a measure space.

Definition 1.7. A measure space is the triple (Ω,F , µ), comprising:

1. A sample space Ω.

2. A σ-field F of certain subsets of Ω.

3. A measure µ on (Ω,F).

A probability space (Ω,F ,P) is a measure space with a probability measure P as the measure.
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Example 1.11. Consider a coin flip. The sample space is Ω = {H,T}, and the σ-field is F = {∅, H, T,Ω}. Let P(H) = p, where
p ∈ [0, 1]. Define A = {ω ∈ Ω : ω = H}. Then:

P(A) =


0, A = ∅
p, A = {H}
1− p, A = {T}
1, A = Ω

If p = 1
2 , then the coin is fair.

Example 1.12. Consider a die roll. The sample space is Ω = {1, 2, 3, 4, 5, 6}, and the σ-field is F = {0, 1}Ω. Let pi = P({i}),
where i ∈ Ω. For all A ∈ F :

P(A) =
∑
i∈A

pi

If pi =
1
6 for all i, then the die is fair, and P(A) = |A|

6 .

The following properties are fundamental and form the basis of probability theory:

Lemma 1.8. Basic properties of P:

1. P(A∁) = 1− P(A).

2. If A ⊆ B, then P(B) = P(A) + P(B \A) ≥ P(A).

3. P(A ∪B) = P(A) + P(B)− P(A ∩B). If A and B are disjoint, then P(A ∪B) = P(A) + P(B).

4. (Inclusion-exclusion formula) For any set of events {A1, · · · , An}:

P

(
n⋃

i=1

Ai

)
=
∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) + · · ·+ (−1)n+1P(A1 ∩A2 ∩ · · · ∩An)

Proof.

1. A ∪A∁ = Ω and A ∩A∁ = ∅ =⇒ P(A ∪A∁) = P(A) + P(A∁) = 1

2. A ⊆ B =⇒ B = A ∪ (B \A) =⇒ P(B) = P(A) + P(B \A)

3. A ∪B = A ∪ (B \A) =⇒ P(A ∪B) = P(A) + P(B \A) = P(A) + P(B \ (A ∩B)) = P(A) + P(B)− P(A ∩B)

4. By induction. When n = 1, it is obviously true. Assume it is true for some positive integers m. When n = m+ 1,

P

(
m+1⋃
i=1

Ai

)
= P

(
m⋃
i=1

Ai

)
+ P(Am+1)− P

(
m⋃
i=1

Ai ∩Am+1

)
(Item 3)

=

m+1∑
i=1

P(Ai)−
∑

1≤i<j≤m

P(Ai ∩Aj) + · · · (−1)m+1P

(
m⋂
i=1

Ai

)
− P

(
m⋃
i=1

Ai ∩Am+1

)

=

m+1∑
i=1

P(Ai)−
∑

1≤i<j≤m+1

P(Ai ∩Aj) + · · ·+ (−1)m+2P

(
m+1⋂
i=1

Ai

)

Therefore, by induction, the Inclusion-exclusion formula is true for any set of events {A1, · · · , An} for any n ∈ N+.

We recall the continuity of function f : R → R. f is continuous at some point x if for all xn, xn → x when n→ ∞. We have:

lim
n→∞

f(xn) = f
(
lim

n→∞
xn

)
= f(x)

Similarly, we say a set function µ is continuous if for all An with A = limn→∞An, we have:

lim
n→∞

µ(An) = µ
(
lim
n→∞

An

)
= µ(A)
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Remark 1.8.1. Given a sequence of sets An. We have two types of set limit:

lim sup
n→∞

An = lim
n↑∞

sup
m≥n

Am =

∞⋂
n=1

∞⋃
m=n

Am = {ω ∈ Ω : ω ∈ An for infinitely many n}

lim inf
n→∞

An = lim
n↑∞

inf
m≥n

Am =

∞⋃
n=1

∞⋂
m=n

Am = {ω ∈ Ω : ω ∈ An for all but finitely many n}

Apparently, lim infn→∞An ⊆ lim supn→∞An

Definition 1.9. We say a sequence of events An converges and limn→∞An exists if:

lim sup
n→∞

An = lim inf
n→∞

An

Given a probability space (Ω,F ,P). If A1, A2, · · · ∈ F such that A = limn→∞An exists, then:

lim
n→∞

P(An) = P
(
lim
n→∞

An

)
From the definition, we can get the following important lemma.

Lemma 1.10. If A1, A2, · · · are an increasing sequence of events (A1 ⊆ A2 ⊆ · · · ), then:

P(A) = P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An)

Similarly, if A1, A2, · · · are a decreasing sequence of events (A1 ⊇ A2 ⊇ · · · ), then:

P(A) = P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An)

Proof.
For A1 ⊆ A2 ⊆ · · · , let Bn = An \An−1

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
m=1

P(Bm) = lim
n→∞

n∑
m=1

P(Bm) = lim
n→∞

P

(
n⋃

m=1

Bm

)
= lim

n→∞
P(An)

For A1 ⊇ A2 ⊇ · · · , we get A∁ =
⋃∞

i=1A
∁
i and A∁

1 ⊆ A∁
2 ⊆ · · · . Therefore,

P

( ∞⋂
n=1

An

)
= 1− P

( ∞⋃
n=1

A∁
n

)
= 1− lim

n→∞
P(A∁

n) = lim
n→∞

P(An)

We can give some terminology to some special probabilities.

Definition 1.11. An event A is null if P(A) = 0.

Remark 1.11.1. Null events need not to be impossible. For example, the probability of choosing a point in a plane is 0.

Definition 1.12. An event A occurs almost surely if P(A) = 1.
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1.3 Conditional probability

Sometimes, we are interested in the probability of a certain event given that another event has occurred.

Definition 1.13. If P(B) > 0, then the conditional probability that A occurs given that B occurs is:

P(A|B) =
P(A ∩B)

P(B)

Remark 1.13.1. For any event A, P(A) can be regarded as P(A|Ω).

Remark 1.13.2. When P(E) = P(E|F ), E and F are said to be independent.

Remark 1.13.3. Given an event B. P(·|B) is also a probability measure on F .

Example 1.13. Two fair dice are thrown. Given that the first shows 3, what is the probability that the sum of number shown
exceeds 6?

P(Sum > 3|First die shows 3) =
3
36
1
6

=
1

6

It is obvious that a certain event occurs when another event either occurs or not occurs.

Lemma 1.14. For any events A and B such that 0 < P(B) < 1:

P(A) = P(A|B)P(B) + P(A|B∁)P(B∁)

Proof.
A = (A ∩B) ∪ (A ∩B∁) =⇒ P(A) = P(A ∩B) + P(A ∩B∁) = P(A|B)P(B) + P(A|B∁)P(B∁)

There are some cases when multiple events allow a certain event to occur.

Lemma 1.15. (Law of total probability) Let {B1, B2, · · · , Bn} be a partition of Ω (Bi ∩Bj = ∅ for all i ̸= j and
⋃n

i=1 = Ω).
Suppose that P(Bi) > 0 for all i. Then:

P(A) =
n∑

i=1

P(A|Bi)P(Bi)

Proof.

P(A) = P(A ∩ Ω) = P

(
A ∩

(
n⋃

i=1

Bi

))
= P

(
n⋃

i=1

(A ∩Bi)

)
=

n∑
i=1

P(A ∩Bi) =

n∑
i=1

P(A|Bi)P(Bi)
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1.4 Independence

In general, the probability of a certain event is affected by the occurrence of other events. There are some exceptions.

Definition 1.16. Two events A and B are independent if P(A ∩B) = P(A)P(B). It is denoted by A ⊥⊥ B.
More generally, a family of events {Ai : i ∈ I} is (mutually) independent if for all subsets J of I:

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

Remark 1.16.1. If the family of events {Ai : i ∈ I} has the property that P(Ai ∩ Aj) = P(Ai)P(Aj) for all i ̸= j, then it is
pairwise independent.

Example 1.14. Roll for dice twice: Ω = {1, 2, · · · , 6} × {1, 2, · · · , 6} and F = 2Ω

Let A be event that the sum is 7. Event A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.
Let B be event that the first roll is 4. Event B = {(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}
Let C be event that the second roll is 3. Event C = {(1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3)}

P(A ∩B) = P((4, 3)) =
1

36
=

1

6

(
1

6

)
= P(A)P(B)

P(B ∩ C) = P((4, 3)) =
1

36
=

1

6

(
1

6

)
= P(B)P(C)

P(A ∩ C) = P((4, 3)) =
1

36
=

1

6

(
1

6

)
= P(A)P(C)

P(A ∩B ∩ C) = P((4, 3)) =
1

36
̸= P(A)P(B)P(C)

Therefore, events A, B and C are pairwise independent, but not mutually independent.

Proposition 1.17. If events A and B are independent, then so are A ⊥⊥ B∁ and A∁ ⊥⊥ B∁.

Proof.

P(A ∩B∁) = P(A)− P(A ∩B) = P(A)− P(A)P(B) = P(A)(1− P(B)) = P(A)P(B∁)

Therefore, A ⊥⊥ B∁ and also A∁ ⊥⊥ B∁.

Proposition 1.18. If events A,B,C are independent, then:

1. A ⊥⊥ (B ∪ C)

2. A ⊥⊥ (B ∩ C)

Proof.

1. Using the properties of probability,

P(A ∩ (B ∪ C)) = P((A ∩B) ∪ (A ∩ C))
= P(A ∩B) + P(A ∩ C)− P(A ∩B ∩ C)
= P(A)P(B) + P(A)P(C)− P(A)P(B)P(C)
= P(A)P(B ∪ C)

2.
P(A ∩ (B ∩ C)) = P(A)P(B)P(C) = P(A)P(B ∩ C)

Remark 1.18.1. If events A and B are independent and A ∩B = ∅, then either P(A) = 0 or P(B) = 0.
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1.5 Product space

There are many σ-fields you can generate using a collection of subset of Ω. However, many of those may be too big to be useful.
Therefore, we have the following definition.

Definition 1.19. Let A be a collection of subsets of Ω. The σ-field generated by A is:

σ(A) =
⋂
A⊆G

G

where G is also a σ-field.

Remark 1.19.1. σ(A) is the smallest σ-field containing A.

Example 1.15. Let Ω = {1, 2, · · · , 6} and A = {{1}} ⊆ 2Ω. σ(A) = {∅, {1}, {2, 3, · · · , 6},Ω}

Corollary 1.20. Suppose (Fi)i∈I is a system of σ-fields in Ω. Then:⋂
i∈I

Fi = {A ∈ Ω : A ∈ Fi for all i ∈ I}

Now that we know which σ-field we should generate, we can finally combine two probability spaces together to form a new probability
space.

Definition 1.21. Product space of two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) is the probability space (Ω1×Ω2,G,P12)
comprising:

1. a collection of ordered pairs Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}

2. a σ-algebra G = σ(F1 ×F2) where F1 ×F2 = {A1 ×A2 : A1 ∈ F1, A2 ∈ F2}

3. a probability measure P12 : F1 ×F2 → [0, 1] given by:

P12(A1 ×A2) = P1(A1)P2(A2)

for A1 ∈ F1, A2 ∈ F2.
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Chapter 2

Random variables and their distribution

2.1 Introduction of random variables

Sometimes, we are not interested in the experiment itself but rather in the consequences of its random outcomes. These consequences
can be represented as functions mapping a sample space to the real number field. Such functions are called ”random variables.”

Definition 2.1. A random variable is a function X : Ω → R with the property that for any x ∈ R,

X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} ∈ F .

Remark 2.1.1. More generally, a random variable is a function X such that for all intervals A ⊆ R,

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} ∈ F .

Such a function is said to be F-measurable.

Remark 2.1.2. The intervals can be replaced by any of the following classes:

1. (a, b) for all a < b,

2. (a, b] for all a < b,

3. [a, b) for all a < b,

4. [a, b] for all a < b,

5. (−∞, x] for all x ∈ R.

This is due to the following reasons:

1. X−1 can be interchanged with any set functions.

2. F is a σ-field.

Claim 2.1.1. Suppose X−1(B) ∈ F for all open sets B. Then X−1(B′) ∈ F for all closed sets B′.

Proof.
For any a, b ∈ R,

X−1([a, b]) = X−1

( ∞⋂
n=1

(
a− 1

n
, b+

1

n

))
=

∞⋂
n=1

X−1

((
a− 1

n
, b+

1

n

))
∈ F .

Remark 2.1.3. The F-measurability of X is necessary because P(X ∈ A) = P({ω : X(ω) ∈ A}) = P(X−1(A)). Thus, X−1(A)
must belong to F .

13
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Example 2.1. A fair coin is tossed twice. Ω = {HH,HT, TH, TT}. For all ω ∈ Ω, let X(ω) be the number of heads.

X(ω) =


0, ω ∈ {TT}
1, ω ∈ {HT, TH}
2, ω ∈ {HH}

X−1((−∞, x]) =


∅, x < 0

{TT}, x ∈ [0, 1)

{HT, TH, TT}, x ∈ [1, 2)

Ω, x ∈ [2,∞)

If we choose F = {∅,Ω}, then X is not a random variable. If we choose F = 2Ω, then X is a random variable.

Before we continue, it is best if we know about Borel set first.

Definition 2.2. Borel set is a set which can be obtained by taking countable union, intersection or complement repeatedly.
(Countably many steps)

Definition 2.3. Borel σ-field of R is a σ-field B(R) that is generated by all open sets. It is a collection of Borel sets.

Example 2.2. {(a, b), [a, b], {a},Q,R \Q} ⊂ B(R). Note that closed sets can be generated by open sets.

Remark 2.3.1. In modern way of understanding, (Ω,F ,P) X−→ (R,B,P ◦X−1)

Claim 2.3.1. P ◦X−1 is a probability measure on (R,B).

Proof.

1. For all B ∈ B, P ◦X−1(B) = P({ω : X(ω) ∈ B}) ∈ [0, 1]

P ◦X−1(∅) = P({ω : X(ω) ∈ ∅}) = P(∅) = 0

P ◦X−1(R) = P({ω : X(ω) ∈ R}) = P(Ω) = 1

2. For any disjoint B1, B2, · · · ∈ B,

P ◦X−1

( ∞⋃
i=1

Bi

)
= P

( ∞⋃
i=1

X−1(Bi)

)
=

∞∑
i=1

P(X−1(Bi)) =

∞∑
i=1

P ◦X−1(Bi)

Remark 2.3.2. We can derive the probability of all A ∈ B.

P([a, b]) = P((−∞, b])− P((−∞, a))

= P((−∞, b])− P

( ∞⋃
n=1

(
−∞, a− 1

n

])

= P((−∞, b])− lim
n→∞

P
((

−∞, a− 1

n

])
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2.2 CDF of random variables

Every random variable has an associated distribution function.

Definition 2.4. The (cumulative) distribution function (CDF) of a random variable X is a function FX : R → [0, 1] defined
as:

FX(x) = P(X ≤ x) := P ◦X−1((−∞, x]).

Example 2.3. From Example 2.1,

P(ω) =
1

4
, FX(x) = P(X ≤ x) =


0, x < 0,
1
4 , 0 ≤ x < 1,
3
4 , 1 ≤ x < 2,

1, x ≥ 2.

Lemma 2.5. The CDF FX of a random variable X satisfies the following properties:

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

2. If x < y, then FX(x) ≤ FX(y).

3. FX is right-continuous (FX(x+ h) → FX(x) as h ↓ 0).

Proof.

1. Let Bn = {ω ∈ Ω : X(ω) ≤ −n} = {X ≤ −n}. Since B1 ⊇ B2 ⊇ · · · , by Lemma 1.10,

lim
x→−∞

FX(x) = P
(
lim
i→∞

Bi

)
= P(∅) = 0.

Alternative proof:

lim
x→−∞

FX(x) = lim
x→−∞

P ◦X−1((−∞, x]) = lim
n→∞

P ◦X−1((−∞,−n]) = P ◦X−1(∅) = 0

Let Cn = {ω ∈ Ω : X(ω) ≤ n} = {X ≤ n}. Since C1 ⊆ C2 ⊆ · · · , by Lemma 1.10,

lim
x→∞

FX(x) = P
(
lim
i→∞

Ci

)
= P(Ω) = 1.

Alternative Proof:
lim
x→∞

FX(x) = lim
x→∞

P ◦X−1((−∞, x]) = P ◦X−1(R) = 1.

2. Let A(x) = {X ≤ x}, A(x, y) = {x < X ≤ y}. Then A(y) = A(x) ∪A(x, y) is a disjoint union.

FX(y) = P(A(y)) = P(A(x)) + P(A(x, y)) = FX(x) + P(x < X ≤ y) ≥ FX(x)

3. Let Bn = {ω ∈ Ω : X(ω) ≤ x+ 1
n}. Since B1 ⊇ B2 ⊇ · · · , by Lemma 1.10,

lim
h↓0

FX(x+ h) = P

( ∞⋂
i=1

Bi

)
= P

(
lim
n→∞

Bn

)
= P({ω ∈ Ω : X(ω) ≤ x}) = FX(x)

Alternative Proof:

lim
h↓0

FX(x+ h) = lim
h↓0

P ◦X−1((−∞, x+ h]) = lim
n→∞

P ◦X−1

((
−∞, x+

1

n

])
= P ◦X−1((−∞, x]) = FX(x)

Remark 2.5.1. F is not left-continuous because:

lim
h↓0

FX(x− h) = lim
n→∞

P ◦X−1

((
−∞, x− 1

n

))
= P ◦X−1((−∞, x)) = FX(x)− P ◦X−1({x})



16 CHAPTER 2. RANDOM VARIABLES AND THEIR DISTRIBUTION

Lemma 2.6. Let FX be the CDF of a random variable X. Then

1. P(X > x) = 1− FX(x).

2. P(x < X ≤ y) = FX(y)− FX(x).

Proof.

1. P(X > x) = P(Ω \ {X ≤ x}) = P(Ω)− P(X ≤ x) = 1− FX(x).

2. P(x < X ≤ y) = P({X ≤ y} \ {X ≤ x}) = P(X ≤ y)− P(X ≤ x) = FX(y)− FX(x).

Example 2.4. (Constant variables) Let X : Ω → R be defined by X(ω) = c for all ω ∈ Ω. For all B ∈ B,

FX(x) = P ◦X−1(B) =

{
0, B ∩ {c} = ∅
1, B ∩ {c} = {c}

X is constant almost surely if there exists c ∈ R such that P(X = c) = 1.

Example 2.5. (Bernoulli variables) Consider flipping coin once. Let X : Ω → R be defined by X(H) = 1 and X(T ) = 0.

FX(x) =


0, x < 0

1− p, 0 ≤ x < 1

1, x ≥ 1

X have Bernoulli distribution, denoted by Bern(p).

Example 2.6. Let A be an event in F and indicator functions 1A : Ω → R such that for all B ∈ B(R):

1A(ω) =

{
1, ω ∈ A

0, ω ∈ A∁ 1−1
A (B) =


∅, B ∩ {0, 1} = ∅
A∁, B ∩ {0, 1} = {0}
A, B ∩ {0, 1} = {1}
Ω, B ∩ {0, 1} = {0, 1}

P ◦ 1−1
A (B) =


0, B ∩ {0, 1} = ∅
P(A∁), B ∩ {0, 1} = {0}
P(A), B ∩ {0, 1} = {1}
1, B ∩ {0, 1} = {0, 1}

Then 1A is a Bernoulli random variable taking values 1 and 0 with probabilities P(A) and P(A∁) respectively.

2.3 PMF / PDF of random variables

We can classify some random variables into either discrete or continuous. This two will be further discussed in the next two chapters.

Definition 2.7. Random variable X is discrete if it takes value in some countable subsets {x1, x2, · · · } only of R.
Discrete random variable X has probability mass function (PMF) fX : R → [0, 1] given by:

fX(x) = P(X = x) = P ◦X−1({x})

Lemma 2.8. Relationship between PMF fX and CDF FX of a random variable X:

1. FX(x) =
∑

i≤x fX(i)

2. fX(x) = FX(x)− limy↑x FX(y)

Proof.

1.
FX(x) = P(X ≤ x) =

∑
i:xi≤x

P(X = xi) =
∑
y≤x

fX(y)

2. Let Bn = {x− 1
n < X ≤ x}. Since B1 ⊇ B2 ⊇ · · · , by Lemma 1.10,

FX(x)− lim
y↑x

FX(y) = P

( ∞⋂
i=1

Bi

)
= P

(
lim
n→∞

Bn

)
= P

({
lim
n→∞

(
x− 1

n

)
< X ≤ x

})
= P(X = x)
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This is problematic when random variable X is continuous because using PMF will get the result of fX(x) = 0 for all x. Therefore,
we would need another definition for continuous random variable.

Definition 2.9. Random variable X is called continuous if its distribution function can be expressed as:

FX(x) =

∫ x

−∞
f(u) du x ∈ R

for some integrable probability density function (PDF) fX : R → [0,∞) of X.

Remark 2.9.1. For small δ > 0:

P(x < X ≤ x+ δ) = FX(x+ δ)− FX(x) =

∫ x+δ

x

fX(u) du ≈ fX(x)δ

Remark 2.9.2. On discrete random variable, the distribution is atomic because the distribution function has jump discontinuities
at values x1, x2, · · · and is constant in between.

Remark 2.9.3. On continuous random variable, the CDF of a continuous variable is absolutely continuous.
Not every continuous function can be written as

∫ x

−∞ fX(u) du. E.g. Canton function

Remark 2.9.4. It is possible that a random variable is neither continuous nor discrete.

2.4 JCDF of random variables

How do we deal with cases when there are more than one random variables?

Definition 2.10. Let X1, X2 : Ω → R be random variables. We define random vector X = (X1, X2) : Ω
2 → R2 with properties

X−1(D) = {ω ∈ Ω : X(ω) = (X1(ω), X2(ω)) ∈ D} ∈ F

for all D ∈ B(R2).
We can also say X = (X1, X2) is a random vector if both X1, X2 : Ω → R are random variables. That means:

X−1
a (B) ∈ F

for all B ∈ B(R), a = 1, 2.

Claim 2.10.1. Both definitions of random vectors are equivalent.

Proof.
By first definition, X−1(A1 ×A2) ∈ F . If we choose A2 = R,

X−1(A1 × R) = {ω ∈ Ω : (X1(ω), X2(ω)) ∈ A1 × R}
= {ω ∈ Ω : X1(ω) ∈ A1} ∩ {ω ∈ Ω : X2(ω) ∈ R}
= X−1

1 (A1)

This means X1 is a random variable. Using similar method, we can also find that X2 is a random variable.
Therefore, we can obtain the second definition from the first definition.
By second definition, X1 and X2 are random variables. Therefore,

X−1(A1 ×A2) = {ω ∈ Ω : (X1(ω), X2(ω)) ∈ A1 ×A2}
= {ω ∈ Ω : X1(ω) ∈ A1} ∩ {ω ∈ Ω : X2(ω) ∈ A2}
= X−1

1 (A1) ∩X−1
2 (A2) ∈ F

Therefore, we can obtain the first definition from the second definition.
Therefore, two definitions are equivalent.

Remark 2.10.1. We can write P ◦X−1(D) = P(X ∈ D) = P({ω ∈ Ω : X(ω) = (X1(ω), X2(ω)) ∈ D}).
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Of course, there is a distribution function corresponding to the random vector.

Definition 2.11. Joint distribution function (JCDF) FX : R2 → [0, 1] is defined as

FX(x1, x2) = FX1,X2
(x1, x2) = P ◦X−1((−∞, x1]× (−∞, x2]) = P(X1 ≤ x1, X2 ≤ x2)

Remark 2.11.1. We can replace all Borel sets by the form [a1, b1]× [a2, b2]× · · · × [an, bn].

Joint distribution function has quite similar properties with normal distribution function.

Lemma 2.12. JCDF FX,Y of random vector (X,Y ) has the following properties:

1. lim(x,y)→(−∞,−∞) FX,Y (x, y) = 0 and lim(x,y)→(∞,∞) FX,Y (x, y) = 1.

2. If x1 ≤ y1 and x2 ≤ y2, then FX,Y (x1, y1) ≤ FX,Y (x2, y2).

3. FX,Y is continuous from above, in that FX,Y (x+ u, y + v) → FX,Y (x, y) as u, v ↓ 0.

We can find the probability distribution of one random variable by disregarding another variable. We get the following distribution.

Definition 2.13. Let X,Y be random variables. We can get a marginal distribution (marginal CDF) by having:

FX(x) = P ◦X−1((−∞, x]) = P
(
X−1((−∞, x]) ∩ Y −1((−∞,∞))

)
= lim

y↑∞
P
(
X−1((−∞, x]) ∩ Y −1((−∞, y])

)
= lim

y↑∞
FX,Y (x, y)

Joint distribution function also has its probability mass function and probability density function too.

Definition 2.14. Two random variables X and Y on (Ω,F ,P) are jointly discrete if the vector (X,Y ) takes values in some
countable subset of R2 only. The corresponding joint (probability) mass function (JPMF) f : R2 → [0, 1] is given by

fX,Y (x, y) = P((X,Y ) = (x, y)) = P ◦ (X,Y )−1({x, y}) FX,Y (x, y) =
∑
u≤x

∑
v≤y

f(u, v) x, y ∈ R

Remark 2.14.1.
fX,Y (x, y) = FX,Y (x, y)− FX,Y (x

−, y)− FX,Y (x, y
−) + FX,Y (x

−, y−)

Remark 2.14.2. More generally, for all B ∈ B(R2),

P ◦ (X,Y )−1(B) =
∑

(u,v)∈B

fX,Y (u, v)

Definition 2.15. Two random variablesX and Y on (Ω,F ,P) are jointly continuous if the joint probability density function
(JPDF) f : R2 → [0,∞) of (X,Y ) can be expressed as:

fX,Y (x, y) =
∂2

∂x ∂y
FX,Y (x, y) FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) du dv x, y ∈ R

Remark 2.15.1. More generally, for all B ∈ B(R2),

P ◦ (X,Y )−1(B) = P((X,Y ) ∈ B) =

∫∫
B

fX,Y (u, v) du dv

Example 2.7. Assume that a special three-sided coin is provided. Each toss results in head (H), tail (T) or edge (E) with equal
probabilities. What is the probability of having h heads, t tails and e edges after n tosses?
Let Hn, Tn, En be the numbers of such outcomes in n tosses of the coin. The vector (Hn, Tn, En) satisfy Hn + Tn + En = n.

P((Hn, Tn, En) = (h, t, e)) =
n!

h!t!e!

(
1

3

)n

Remark 2.15.2. It is not generally true for two continuous random variables X and Y to be jointly continuous.
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Example 2.8. Let X be uniformly distributed on [0, 1] (fX(x) = 1[0,1]). This means fX(x) = 1 when x ∈ [0, 1] and 0 otherwise.
Let Y = X (Y (ω) = X(ω) for all ω ∈ Ω). That means (X,Y ) = (X,X). Let B = {(x, y) : x = y and x ∈ [0, 1]} ∈ B(R2).
Since y = x is just a line,

P ◦ (X,Y )−1(B) = 1∫∫
B

fX,Y (u, v) du dv = 0 ̸= P ◦ (X,Y )−1(B)

Therefore, X and Y are not jointly continuous.
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Chapter 3

Discrete random variables

3.1 Introduction of discrete random variables

Let us revisit some key definitions related to discrete random variables from the previous chapter.

Definition 3.1. A random variable X is said to be discrete if it takes values in a countable subset {x1, x2, · · · } of R.
The (cumulative) distribution function (CDF) of a discrete random variable X is the function FX : R → [0, 1] defined as:

FX(x) = P(X ≤ x).

The probability mass function (PMF) of a discrete random variable X is the function fX : R → [0, 1] defined as:

fX(x) = P(X = x).

The CDF and PMF are related by the following equations:

FX(x) =
∑

i:xi≤x

fX(xi), fX(x) = FX(x)− lim
y↑x

FX(y).

Lemma 3.2. The PMF fX : R → [0, 1] of a discrete random variable X satisfies the following properties:

1. The set of x values for which fX(x) ̸= 0 is countable.

2.
∑

i fX(xi) = 1, where x1, x2, · · · are the values of x such that fX(x) ̸= 0.

Next, we recall the definitions of joint distribution and joint mass functions.

Definition 3.3. For jointly discrete random variables X and Y , the joint probability mass function (JPMF) fX,Y : R2 → [0, 1]
is defined as:

fX,Y (x, y) = P((X,Y ) = (x, y)) = P ◦ (X,Y )−1({x, y}), FX,Y (x, y) =
∑
u≤x

∑
v≤y

f(u, v), x, y ∈ R.

Recall that two events A and B are independent if the occurrence of A does not affect the probability of B occurring.

Definition 3.4. Discrete random variables X and Y are independent if the events {X = x} and {Y = y} are independent for
all x, y. Equivalently, X and Y are independent if:

1. P((X,Y ) ∈ A×B) = P(X ∈ A)P(Y ∈ B) for all A,B ∈ B(R).

2. FX,Y (x, y) = FX(x)FY (y) for all x, y ∈ R.

3. fX,Y (x, y) = fX(x)fY (y) for all x, y ∈ R.

21
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Claim 3.4.1. Three definitions are equivalent.

Proof.
We can get definition 2 from definition 1.

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX(x)FY (y)

We can get definition 3 from definition 2.

fX,Y (x, y) = FX,Y (x, y)− FX,Y (x
−, y)− FX,Y (x, y

−) + FX,Y (x
−, y−)

= FX(x)FY (y)− FX(x−)FY (y)− FX(x)FY (y
−) + FX(x−)FY (y

−)

= (FX(x)− FX(x−))(FY (y)− FY (y
−)) = fX(x)fY (y)

We can get definition 1 from definition 3.

P ◦ (X,Y )−1(E × F ) =
∑

(x,y)∈E×F

fX,Y (x, y) =
∑
x∈E

∑
y∈F

fX(x)fY (y) = (P ◦X−1(E))(P ◦ Y −1(F ))

Therefore, three definitions are equivalent.

Remark 3.4.1. More generally, let X1, X2, · · · , Xn : Ω → R be discrete random variables. They are independent if

1. For all Ai ∈ B(R),

P ◦ (X1, X2, · · · , Xn)
−1(A1 ×A2 × · · · ×An) =

n∏
i=1

P ◦X−1
i (Ai)

2. For all xi ∈ R,

FX1,X2,··· ,Xn
(x1, x2, · · · , xn) =

n∏
i=1

FXi
(xi)

3. For all xi ∈ R,

fX1,X2,··· ,Xn
(x1, x2, · · · , xn) =

n∏
i=1

fXi
(xi)

Recall that we say A1, A2, · · · , An are independent if for any I ⊆ {1, 2, · · · , n}:

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai)

Remark 3.4.2. From the definition, we can see that X ⊥⊥ Y means that X−1(E) ⊥⊥ Y −1(F ) for all E,F ∈ B(R).

Remark 3.4.3. We can generate σ-field using random variables by defining σ-field generated by random variable X

σ(X) = {X−1(E) : E ∈ B(R)} ⊆ F

From the remarks, we can extend the definition of independence from random variables to σ-fields.

Definition 3.5. Let G,H ⊆ F be two σ-fields. We say G and H are independent if A ⊥⊥ B for all A ∈ G, B ∈ H.

Remark 3.5.1. σ(X) ⊥⊥ σ(Y ) ⇐⇒ X ⊥⊥ Y

Theorem 3.6. Given two random variables X and Y . If X ⊥⊥ Y and we have two functions g, h : R → R such that g(X) and
h(Y ) are still random variables, then g(X) ⊥⊥ h(Y ).

Proof.
For all A,B ∈ B,

P((g(X), h(Y )) ∈ A×B) = P(g(X) ∈ A, h(Y ) ∈ B)

= P(X ∈ {x : g(x) ∈ A}, Y ∈ {y : h(y) ∈ B})
= P(X ∈ {x : g(x) ∈ A})P(Y ∈ {y : h(y) ∈ B})
= P(g(X) ∈ A)P(h(Y ) ∈ B)

Therefore, g(X) ⊥⊥ h(Y ).
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Remark 3.6.1. We assume a product space (Ω,F ,P) of two probability space (Ω1,F1,P1) and (Ω2,F2,P2).
(Ω = Ω1 × Ω2, F = σ(F1 ×F2), P(A1 ×A2) = P1(A1)P2(A2)).
Any pair of events of the form E1 × Ω2 and Ω1 × E2 are independent.

P((E1 × Ω2) ∩ (Ω1 × E2)) = P(E1 × E2) = P1(E1)P2(E2) = P(E1 × Ω2)P(Ω1 × E2)

We have some important examples of random variables that have wide number of applications.

Example 3.1. (Bernoulli random variable) X ∼ Bern(p)
Let A ∈ F be a specific event. A Bernoulli trial is considered a success if A occurs. Let X : Ω → R be such that

X(ω) = 1A(ω) =

{
1, ω ∈ A

0, ω ∈ A∁ P(A) = P(X = 1) = p P(A∁) = P(X = 0) = 1− p

Example 3.2. (Binomial distribution) Y ∼ Bin(n, p)
Suppose we perform n independent Bernoulli trials X1, X2, · · · , Xn. Let Y = X1 +X2 + · · ·+Xn be total number of successes.

fY (k) = P(Y = k) = P

(
k∑

i=1

Xi = k

)
= P({#{i : Xi = 1} = k})

We denote A = {#{i : Xi = 1} = k} =
⋃

σ Aσ where σ = (σ1, σ2, · · · , σn) can be any sequence satisfying #{i : σi = 1} = k and
Aσ := events that (X1, X2, · · · , Xn) = (σ1, σ2, · · · , σn). Events Aσ are mutually exclusive. Hence P(A) =

∑
σ P(Aσ).

There are totally
(
n
k

)
different σ’s in the sum. By independence, we have

P(Aσ) = P(X1 = σ1, X2 = σ2, · · · , Xn = σn) = P(X1 = σ1)P(X2 = σ2) · · ·P(Xn = σn) = pk(1− p)n−k

Hence, fY (k) = P(A) =
(
n
k

)
pk(1− p)n−k.

Example 3.3. (Trinomial distribution) Suppose we perform n trials, each of which result in three outcomes A, B and C, where
A occurs with probability p, B with probability q, and C with probability 1 − p − q. Probability of r A’s, w B’s, and n − r − w
C’s is

P(#A = r,#B = w,#C = n− r − w) =
n!

r!w!(n− r − w)!
prqw(1− p− q)n−r−w

Example 3.4. (Geometric distribution) W ∼ Geom(p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be the probability of success and
W be the waiting time which elapses before first success.

P(W > k) = (1− p)k P(W = k) = P(W > k − 1)− P(W > k) = p(1− p)k−1

Example 3.5. (Negative binomial distribution) Wr ∼ NBin(r, p)
Similar with examples of geometric distribution, let Wr be the waiting time for the r-th success. For k ≥ r,

fWr (k) = P(Wr = k) =

(
k − 1

r − 1

)
pr(1− p)k−r

Remark 3.6.2. Wr is the sum of r independent geometric variables.

Example 3.6. (Poisson distribution) X ∼ Poisson(λ)
Poisson variable is a discrete random variable with Poisson PMF:

fX(k) =
λk

k!
e−λ k = 0, 1, 2, · · ·

for some parameter λ > 0.
This is used for approximation of binomial random variable Bin(n, p) when n is large, p is small and np is moderate.
Let X ∼ Bin(n, p) and λ = np.

P(X = k) =

(
n

k

)
pk(1− p)n−k =

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k

=
λk

k!

(
n!

nk(n− k)!

) (
1− λ

n

)n(
1− λ

n

)k ≈ λk

k!
(1)

(
e−λ

1

)
=
λk

k!
e−λ
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We have an interesting example concerning independence with Poisson distribution involved.

Example 3.7. (Poisson flips) A coin is tossed once and head turns up with probability p.
Let random variables X and Y be the numbers of heads and tails respectively. X and Y are not independent since

P(X = 1, Y = 1) = 0 P(X = 1)P(Y = 1) = p(1− p) ̸= 0

Suppose now that the coin is tosses N times, where N has the Poisson distribution with parameter λ.
In this case, random variables X and Y are independent since

P(X = x, Y = y) = P(X = x, Y = y|N = x+ y)P(N = x+ y)

=

(
x+ y

x

)
px(1− p)y

λx+y

(x+ y)!
e−λ

=
(λp)x(λ(1− p))y

x!y!
e−λ

P(X = x)P(Y = y) =
∑
i≥x

P(X = x|N = i)P(N = i)
∑
j≥y

P(Y = y|N = j)P(N = j)

=
∑
i≥x

(
i

x

)
px(1− p)i−xλ

i

i!
e−λ

∑
j≥y

(
j

y

)
pj−y(1− p)y

λj

j!
e−λ

=
(λp)x

x!
e−λ

∑
i≥x

(λ(1− p))i−x

(i− x)!

 (λ(1− p))y

y!
e−λ

∑
j≥y

(λp)j−y

(j − y)!


=

(λp)x

x!
e−λ+λ(1−p) (λ(1− p))y

y!
e−λ+λp

=
(λp)x(λ(1− p))y

x!y!
e−λ = P(X = x, Y = y)

3.2 Expectation of discrete random variables

In real-world scenarios, we often want to determine the expected outcome based on calculated probabilities.
The expected result is typically a theoretical approximation of the empirical average.
Assume we have random variables X1, X2, · · · , XN that take values in {x1, x2, · · · , xn} with a probability mass function fX(x).
The empirical average is given by:

µ =
1

N

N∑
i=1

Xi ≈
1

N

n∑
i=1

xiNf(xi) =

N∑
i=1

xif(xi).

Definition 3.7. Suppose we have a discrete random variable X taking values from {x1, x2, · · · } with PMF fX(x). The mean
value, expectation, or expected value of X is defined as:

EX = E(X) :=
∑
i

xifX(xi) =
∑

x:fX(x)>0

xfX(x),

whenever this sum is absolutely convergent. Otherwise, we say EX does not exist.

Example 3.8. Suppose a product is sold seasonally. Let b represent the net profit per sold unit, ℓ the net loss per unsold unit,
and X the number of products ordered by customers. If y units are stocked, the expected profit Q(y) is given by:

Q(y) =

{
bX − (y −X)ℓ, X ≤ y,

yb, X > y.
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Lemma 3.8. If discrete random variable X has a PMF fX and g : R → R such that g(X) is still a discrete random variable, then

E(g(X)) =
∑
x

g(x)fX(x)

whenever this sum is absolutely convergent.

Proof.
Denote by Y := g(X).

∑
x

g(x)fX(x) =
∑
y

∑
x:g(x)=y

g(x)fX(x) =
∑
y

y

 ∑
x:g(x)=y

fX(x)

 =
∑
y

y

 ∑
x:g(x)=y

{ω ∈ Ω : X(ω) = x}


=
∑
y

yP({ω ∈ Ω : g(X(ω)) = y})

=
∑
y

yP({ω ∈ Ω : Y (ω) = y})

=
∑
y

yfY (y) = EY = Eg(X)

Lemma 3.9. Let (X,Y ) be a discrete random vector with JPMF fX,Y (x, y). Let g : R2 → R such that g(X,Y ) is a discrete
random variable. Then

Eg(X,Y ) =
∑
x,y

g(x, y)fX,Y (x, y)

Proof.
Denote by Z := g(X,Y ).

∑
x,y

g(x, y)fX,Y (x, y) =
∑
z

∑
x,y:g(x,y)=z

g(x, y)fX,Y (x, y) =
∑
z

z

 ∑
x,y:g(x,y)=z

fX,Y (x, y)


=
∑
z

z

 ∑
x,y:g(x,y)=z

P((X,Y ) = (x, y))


=
∑
z

zP({ω ∈ Ω : g(X,Y )(ω) = z})

=
∑
z

zP({ω ∈ Ω : Z(ω) = z}) =
∑
z

zfZ(z) = EZ = Eg(X,Y )

The lemmas have provided a method to calculate the moments of a discrete distribution. Most of the time, we only care about the
expectation and variance.

Definition 3.10. Let k ∈ N+. We have a special term for each of the following expectations:

1. The k-th moment mk of X is defined to be mk = E(Xk).

2. The k-th central moment αk is αk = E((X − EX)k) = E((X −m1)
k).

3. Mean of X is the 1st moment m1 = E(X) and is denoted by µ.

4. Variance of X is the 2nd central moment α2 = Var(X) = E((X −m1)
2) = E(X2)− (EX)2 = E(X2)− µ2.

5. Standard deviation of X is defined as
√
Var(X) and is denoted by σ.

Remark 3.10.1. Not all random variables have k-th moments for all k ∈ N+.

Remark 3.10.2. We cannot use collection of moments to uniquely determine a distribution that has k-th moments for all k ∈ N.
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We have the expectation and the variance of following distribution.

Example 3.9.

Bernoulli : EX = p Var(X) = p(1− p)

Binomial : EX = np Var(X) = np(1− p)

Geometric : EX = p−1 Var(X) = (1− p)p−2

Poisson : EX = λ Var(X) = λ

Theorem 3.11. Expectation operator E has the following properties:

1. If X ≥ 0, then EX ≥ 0.

2. If a, b ∈ R, then E(aX + bY ) = aEX + bEY .

3. The random variable 1, taking the value 1 always, has expectation E(1) = 1.

Proof.

1. Since fX(x) ≥ 0 for all x, EX =
∑

x xfX(x) ≥ 0 if X ≥ 0.

2. Let g(X,Y ) = aX + bY . Then,

E(aX + bY ) =
∑
x,y

(ax+ by)fX,Y (x, y) = a
∑
x

x

(∑
y

fX,Y (x, y)

)
+ b

∑
y

y

(∑
x

fX,Y (x, y)

)
= a

∑
x

xfX(x) + b
∑
y

yfY (y) = aEX + bEY

3. E(1) = 1(1) = 1.

Remark 3.11.1. More generally, we have

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiEXi

Example 3.10. Assume we have N different types of card and each time one gets a card to be any one of the N types. Each
types is equally likely to be gotten. What is the expected number of types of card we can get if we get n cards?
Let X = X1 +X2 + · · ·+XN where Xi = 1 if at least one type i card is among the n cards and otherwise 0.

EXi = P(Xi = 1) = 1−
(
N − 1

N

)n

EX =

N∑
i=1

EXi = N

(
1−

(
N − 1

N

)n)
What is the expected number of cards one needs to collect in order to get all N types?
Let Y = Y0 + Y1 + · · ·+ YN−1 where Yi is the number of additional cards we need to get in order to get a new type after having i
distinct types.

P(Yi = k) =

(
i

N

)k−1
N − i

N
(Yi ∼ Geom

(
N−i
N

)
)

EYi =
N

N − i

EY =

N−1∑
i=0

EYi = N

(
1

N
+

1

N − 1
+ · · ·+ 1

)

Lemma 3.12. If two discrete random variables X and Y are independent, then E(XY ) = EXEY .

Proof.

E(XY ) =
∑
x,y

xyfX,Y (x, y) =
∑
x,y

xyfX(x)fY (y) =
∑
x

xfX(x)
∑
y

yfY (y) = EXEY
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Lemma 3.13. Given two discrete random variables X and Y . Let g, h : R → R such that g(X), h(Y ) are still discrete random
variables. If X ⊥⊥ Y and E(g(X)h(Y )),Eg(X) and Eh(Y ) exist, then E(g(X)h(Y )) = Eg(X)Eh(Y ).

Proof.

E(g(X)h(Y )) =
∑
x,y

g(x)h(y)fX,Y (x, y) =
∑
x,y

g(x)h(y)fX(x)fY (y) =
∑
x

g(x)fX(x)
∑
y

h(y)fY (y) = Eg(X)Eh(Y )

We can now say that two independent random variables are uncorrelated when they are independent.

Definition 3.14. Random variables X and Y are uncorrelated if E(XY ) = EXEY .

Remark 3.14.1. If X and Y are independent, then they are uncorrelated. The converse is generally not true.

Example 3.11. Let X be such that fX(0) = fX(1) = fX(−1) = 1
3 and Y be such that Y = 0 if X ̸= 0 and Y = 1 if X = 0.

E(XY ) = 0 EX = 0 = E(XY )

However,

P(X = 0, Y = 0) = 0 P(X = 0) ̸= 0 P(Y = 0) ̸= 0 P(X = 0)P(Y = 0) ̸= 0

Therefore, X and Y are uncorrelated, but they are not independent.

We can now use the properties of expectations to deduce the properties of variance.

Theorem 3.15. For random variables X and Y ,

1. Var(aX + b) = a2 Var(X) for a ∈ R.

2. Var(X + Y ) = Var(X) + Var(Y ) if X and Y are uncorrelated.

Proof.

1. Using linearity of E,

Var(aX + b) = E((aX + b− E(aX + b))2) = E(a2(X − EX)2) = a2E((X − EX)2) = a2 Var(X)

2. When X and Y are uncorrelated,

Var(X + Y ) = E((X + Y − E(X + Y ))2)

= E((X − EX)2 + 2(XY − EXEY ) + (Y − EY )2)

= Var(X) + 2(E(XY )− E(X)E(Y )) + Var(Y )

= Var(X) + Var(Y )

Definition 3.16. Covariance of two random variables X and Y is:

cov(X,Y ) = E((X − EX)(Y − EY )) = E(XY )− EXEY

Remark 3.16.1.
Var(X) = cov(X,X)

Remark 3.16.2. In general, for any random variables X1, X2, · · · , Xn,

Var(X1 +X2 + · · ·+Xn) =

n∑
i=1

Var(Xi) + 2
∑
i<j

(E(XiXj)− EXiEXj) =

n∑
i=1

Var(Xi) + 2
∑
i<j

cov(Xi, Xj)

Remark 3.16.3. If Xi are (pairwise) independent or uncorrelated, we can get that cov(Xi, Xj) = 0 for all i ̸= j.
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Example 3.12. If Xi are independent and Var(Xi) = 1 for all i, then:

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) = n

If Xi = X for all i and Var(X) = 1, then:

Var

(
n∑

i=1

Xi

)
= Var(nX) = n2

3.3 Conditional distribution of discrete random variables

In the first chapter, we have discussed the conditional probability P(B|A). We can use this to define a distribution function.

Definition 3.17. Suppose X,Y : Ω → R are two discrete random variables. Conditional distribution of Y given X = x for
any x such that P(X = x) > 0 is defined by

P(Y ∈ ·|X = x)

Conditional distribution function (Conditional CDF) of Y given X = x for any x such that P(X = x) > 0 is defined by

FY |X(y|x) = P(Y ≤ y|X = x)

Conditional mass function (Conditional PMF) of Y given X = x or any x such that P(X = x) > 0 is defined by

fY |X(y|x) = P(Y = y|X = x)

Remark 3.17.1. By definition,

fY |X(y|x) = P(Y = y,X = x)

P(X = x)
=

P(Y = y,X = x)∑
v P((X,Y ) = (x, v))

.

Remark 3.17.2. For any x ∈ R, the conditional PMF fY |X(y|x) is a probability mass function in y.

Remark 3.17.3. If X and Y are independent, then fY |X(y|x) = fY (y).

Conditional distributions still have properties of original distribution.

Lemma 3.18. Given two discrete random variables X and Y . Conditional distributions have following properties:

1. FY |X(y|x) =
∑

v≤y fY |X(v|x)

2. fY |X(y|x) = FY |X(y|x)− FY |X(y−|x)

Proof.

1. ∑
v≤y

fY |X(v|x) =
∑
v≤y

P(Y = v|X = x) = P(Y ≤ y|X = x) = FY |X(y|x)

2. This is just Lemma 2.8.
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Definition 3.19. Given two discrete random variables X and Y . Conditional expectation ψ of Y given X = x for any x is
defined by:

ψ(x) = E(Y |X = x) =
∑
y

yfY |X(y|x)

Conditional expectation ψ of Y given X is defined by:

ψ(X) = E(Y |X)

Example 3.13. Assume we roll a fair dice.

Ω = {1, 2, · · · , 6} Y (ω) = ω X(ω) =

{
1, ω ∈ {2, 4, 6}
0, ω ∈ {1, 3, 5}

We try to guess Y . If we do not have any information about X,

EY = argmin
e

(E((Y − e)2)) = 3.5

If we know that X = x, in which we have two cases: X = 1 and X = 0

fY |X(y|1) = P(X = 1, Y = y)

P(X = 1)
=

{
1
3 , y = 2, 4, 6

0, y = 1, 3, 5
fY |X(y|0) = P(X = 0, Y = y)

P(X = 0)
=

{
0, y = 2, 4, 6
1
3 , y = 1, 3, 5

E(Y |X = 1) =
∑
y

yfY |X(y|1) = 2 + 4 + 6

3
= 4 E(Y |X = 0) =

1 + 3 + 5

3
= 3

Finally, if we want to guess Y based on the future information of X,

ψ(X) = E(Y |X) = 4(1X=1) + 3(1X=0)

Example 3.14. If Y = X, then ψ(X) = E(Y |X) = E(X|X) = X.

Example 3.15. If Y ⊥⊥ X, then ψ(X) = EY .

In fact, we can extend the definition of conditional expectation into σ-field.

Definition 3.20. Given a random variable Y and a σ-field H ⊆ F .
E(Y |H) is any random variable Z satisfying the following two properties:

1. Z is H-measurable. (Z−1(B) ∈ H for all B ∈ B(R))

2. E(Y 1A) = E(Z1A) for all A ∈ H.

Remark 3.20.1. Under this definition,
E(Y |X) = E(Y |σ(X))

Theorem 3.21. (Law of total expectation) Given two discrete random variables X and Y . Conditional expectation ψ(X) =
E(Y |X) satisfies:

E(ψ(X)) = E(Y )

Proof.
By Lemma 3.8,

E(ψ(X)) =
∑
x

ψ(x)fX(x) =
∑
x,y

yfY |X(y|x)fX(x) =
∑
x,y

yfX,Y (x, y) =
∑
y

yfY (y) = E(Y )
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Example 3.16. A miner is trapped in a mine with doors, each will lead to a tunnel. Tunnel 1 will help the miner reach safety
after 3 hours respectively. However, tunnel 2 and 3 will send the miner back after 5 and 7 hours respectively.
What is the expected amount of time the miner need to reach safety? (Assume that the miner is memoryless)
Let X be the amount of time to reach safety, Y be the door number he chooses for the first time.

EX = E(E(X|Y )) =

3∑
k=1

E(X|Y = k)P(Y = k) = 3

(
1

3

)
+ (EX + 5)

(
1

3

)
+ (EX + 7)

(
1

3

)
EX = 15

What is the expected amount of time the miner needed to reach safety after he chose the second door and sent back?
Let X̃ be the time for the miner to reach safety after the first round.

E(X|Y = 2) =
∑
x

xfX|Y (x|2) =
∑
x

x
P(X = x, Y = 2)

P(Y = 2)
=
∑
x

x
P(X̃ = x− 5, Y = 2)

P(Y = 2)
=
∑
x̃

(x̃+ 5)P(X̃ = x̃) = EX + 5

Example 3.17. We consider a sum of random number of random variables.
Let N be the number of customers and Xi be the amount of money spent by the i-th customers.
Assume that N and Xi’s are all independent and EXi = EX, what is the expected total amount of money spent by all N customers?

E

(
N∑
i=1

Xi

)
= E

(
E

(
N∑
i=1

Xi

∣∣∣∣∣N
))

=

∞∑
n=0

E

(
N∑
i=1

Xi

∣∣∣∣∣N = n

)
P(N = n)

=

∞∑
n=0

∑
y

y

P
(∑N

i=1Xi = y,N = n
)

P(N = n)

P(N = n)

=

∞∑
n=0

∑
y

yP

(
n∑

i=1

Xi = y

)
P(N = n)

=

∞∑
n=0

E

(
n∑

i=1

Xi

)
P(N = n)

=

∞∑
n=0

nEXP(N = n) = ENEX

The following theorem is the generalization of Law of total expectation.

Theorem 3.22. Given two discrete random variables X and Y . Conditional expectation ψ(X) = E(Y |X) satisfies:

E(ψ(X)g(X)) = E(Y g(X))

for any function g for which both expectations exist.

Proof.
By Lemma 3.8,

E(ψ(X)g(X)) =
∑
x

ψ(x)g(x)fX(x) =
∑
x,y

yfY |X(y|x)g(x)fX(x) =
∑
x,y

yfX,Y (x, y)g(x) = E(Y g(X))
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3.4 Convolution of discrete random variables

Finally, a lot of times, we consider the sum of the two variables. For example, the number of heads in n tosses of a coin. However,
there are situations that are more complicated, especially when the summands are dependent. We tries to find a formula for describing
the mass function of the sum Z = X + Y .

Theorem 3.23. Given two jointly discrete random variables X and Y . The probability of sum of two random variables is given
by:

P(X + Y = z) =
∑
x

fX,Y (x, z − x) =
∑
y

fX,Y (z − y, y)

Proof.
We have the disjoint union:

{X + Y = z} =
⋃
x

({X = x} ∩ {Y = z − x})

At most countably many of its contributions have non-zero probability. Therefore,

P(X + Y = z) =
∑
x

P(X = x, Y = z − x) =
∑
x

f(x, z − x)

Definition 3.24. Convolution fX+Y (fX ∗ fY ) of PMFs of two independent discrete random variables X and Y is the PMF of
X + Y :

fX+Y (z) = P(X + Y = z) =
∑
x

fX(x)fY (z − x) =
∑
y

fX(z − y)fY (y)

There is an important example that has a wide range of applications in real life. However, we will not discuss this here. You can find
the example in Appendix A.
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Chapter 4

Continuous random variables

4.1 Introduction to Continuous Random Variables

We begin by recalling the definition of continuous random variables.

Definition 4.1. A random variable X is continuous if its cumulative distribution function (CDF) FX(x) can be expressed
as:

FX(x) = P(X ≤ x) =

∫ x

−∞
f(u) du

for some integrable probability density function (PDF) fX : R → [0,∞).

Remark 4.1.1. The PDF fX is not uniquely defined, as two integrable functions that differ only on a set of measure zero yield
the same integral. However, if FX is differentiable at u, we define fX(u) = F ′

X(u).

Note that we use the same notation f for both mass functions and density functions, as they serve analogous purposes.

Remark 4.1.2. The value fX(x) is not a probability. However, fX(x) dx = P(x < X ≤ x + dx) can be interpreted as an
infinitesimal probability element.

Lemma 4.2. If a continuous random variable X has a density function fX , then:

1.
∫∞
−∞ fX(x) dx = 1.

2. P(X = x) = 0 for all x ∈ R.

3. P(a ≤ X ≤ b) =
∫ b

a
fX(x) dx.

Proof.

1. ∫ ∞

−∞
fX(x) dx = lim

x→∞
FX(x) = 1.

2.

P(X = x) = lim
h→0

∫ x

x−h

fX(x) dx = FX(x)− lim
h→∞

F (x− h) = FX(x)− FX(x) = 0.

3.

P(a ≤ X ≤ b) = F (b)− F (a) =

∫ b

−∞
fX(x) dx−

∫ a

−∞
fX(x) dx =

∫ b

a

fX(x) dx.

Remark 4.2.1. More generally, for an interval B, we have:

P(X ∈ B) =

∫
B

fX(x) dx.

33
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We also recall the definition of independence. This definition also works for continuous random variables.

Definition 4.3. Two continuous random variables X and Y are called independent if for all x, y ∈ R,

FX,Y (x, y) = FX(x)FY (y)

Theorem 4.4. Let two continuous random variables X and Y be independent. Suppose g(X) and h(Y ) are still continuous
random variables, then g(X) and h(Y ) are independent.

4.2 Expectation of continuous random variables

In a continuous random variable X, the probability in every single point x is 0. Therefore, in order to make sense of the expectation
of continuous random variable, we naturally give the following definition.

Definition 4.5. Expectation of a continuous random variable X with density function f is given by:

EX =

∫ ∞

−∞
xfX(x) dx

whenever this integral exists.

Remark 4.5.1. We usually can define EX only if E|X| exists.

We have a special properties in the continuous random variable.

Lemma 4.6. (Tail sum formula) If continuous random variable X has a PDF fX with fX(x) = 0 when x < 0, and a CDF FX ,
then

EX =

∫ ∞

0

(1− FX(x)) dx

Proof. ∫ ∞

0

(1− FX(x)) dx =

∫ ∞

0

P(X > x) dx =

∫ ∞

0

∫ ∞

x

fX(y) dy dx =

∫ ∞

0

∫ y

0

fX(y) dx dy =

∫ ∞

0

yfX(y) dy = EX

The following lemma is a formula I developed just for proving the next theorem.

Lemma 4.7. If continuous random variable X has a PDF fX with fX(x) = 0 when x > 0, and a CDF FX , then

EX =

∫ 0

−∞
−FX(x) dx

Proof. ∫ 0

−∞
−FX(x) dx =

∫ 0

−∞

∫ x

−∞
−fX(y) dy dx =

∫ 0

−∞

∫ 0

y

−fX(y) dx dy =

∫ 0

−∞
yfX(y) dy = EX

Similar to discrete random variable, we can ask what is Eg(X) for a function g.

Theorem 4.8. If X and g(X) are continuous random variables, then

E(g(X)) =

∫ ∞

−∞
g(x)fX(x) dx
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Proof.
We first consider that g(x) ≥ 0 for all x. Let Y = g(X) and B = {x : g(x) > y}. By Lemma 4.6,

E(g(X)) =

∫ ∞

0

P(g(X) > y) dy =

∫ ∞

0

∫
B

fX(x) dx dy =

∫ ∞

0

∫ g(x)

0

fX(x) dy dx =

∫ ∞

0

g(x)fX(x) dx

We then consider that g(x) ≤ 0 for all x. Let Z = g(X) and C = {x : g(x) < z}. By Lemma 4.7,

E(g(X)) =

∫ 0

−∞
−FZ(z) dz =

∫ 0

−∞

∫
C

−fX(x) dx dz =

∫ 0

−∞

∫ 0

g(x)

−fX(x) dz dx =

∫ 0

−∞
g(x)fX(x) dx

Now we combined both formulas into one. If g(X) is a random variable,

E(g(X)) =

∫ ∞

0

g(x)fX(x) dx+

∫ 0

−∞
g(x)fX(x) dx =

∫ ∞

−∞
g(x)fX(x) dx

Similar to discrete random variables, this theorem also provided a method to calculate the moments of a continuous distribution.

Definition 4.9. Given k ∈ N+ and a continuous random variable X. The k-th moment is defined to be

EXk =

∫ ∞

−∞
xkfX(x) dx

The k-th central moment is defined to be

E((X − EX)k) =

∫ ∞

−∞
(x− EX)kfX(x) dx

Variance is defined as Var(X) = E(X2)− (EX)2.

We have some important continuous distributions.

Example 4.1. (Uniform distribution) X ∼ U[a, b]
Random variable X is uniform on [a, b] if CDF and PDF of X is

FX(x) =


0, x ≤ a
x−a
b−a , a < x ≤ b

1, x > b

fX(x) =

{
1

b−a , a < x ≤ b

0, Otherwise

Example 4.2. (Inverse transform sampling) If we have an invertible CDF G(x). How can we generate a random variable Y
with the given distribution function?
We only need to generate an uniform random variable U ∼ U[0, 1]. We claim that Y = G−1(U) has the distribution function G(x).

FY (x) = P(Y ≤ x) = P(G−1(U) ≤ x) = P(U ≤ G(x)) = FU (G(x)) = G(x)

Example 4.3. (Exponential distribution) X ∼ Exp(λ)
Random variable X is exponential with parameter λ > 0 if CDF and PDF of X is

FX(x) =

{
1− e−λx, x ≥ 0

0, x < 0
fX(x) =

{
λe−λx, x ≥ 0

0, x < 0
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Example 4.4. (Normal distribution / Gaussian distribution) X ∼ N(µ, σ2)
Random variable X is normal if it has two parameters µ and σ2, and its PDF and CDF is

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
FX(x) =

∫ x

−∞
fX(u) du

This distribution is the most important distribution.
The random variable X is standard normal if µ = 0 and σ2 = 1. (X ∼ N(0, 1))

fX(x) = ϕ(x) =
1√
2π
e−

x2

2 FX(x) = Φ(x) =

∫ x

−∞
ϕ(u) du

Claim 4.9.1. ϕ(x) is a probability distribution function.

Proof.
Let I =

∫∞
−∞ ϕ(x) dx.

I2 =

∫ ∞

−∞
ϕ(x) dx

∫ ∞

−∞
ϕ(y) dy =

1

2π

∫ ∞

−∞

∫ ∞

−∞
e−

x2+y2

2 dx dy

Let x = r cos θ and y = r sin θ where r ∈ [0,∞) and θ ∈ [0, 2π]

I2 =
1

2π

∫ 2π

0

∫ ∞

0

e−
r2

2 r dr dθ =
1

2π

∫ 2π

0

∫ ∞

0

e−
r2

2 d

(
r2

2

)
dθ =

1

2π

∫ 2π

0

dθ = 1

These are some properties that are used frequently.

Lemma 4.10. The normal distribution has the following properties:

1. Let X ∼ N(0, 1). If a random variable Y = bX + a for some a, b ∈ R and b ̸= 0, then Y ∼ N(a, b2).

2. Let X ∼ N(a, b2) for some a, b ∈ R and b ̸= 0. If a random variable Y = X−a
b , then Y ∼ N(0, 1).

3. If Y ∼ N(a, b2), then EY = a and Var(Y ) = b2.

Proof.

1. Let z = bx+ a.

FY (y) = P(Y ≤ y) = P
(
X ≤ y − a

b

)
=

1√
2π

∫ y−a
b

−∞
e−

x2

2 dx =
1√
2πb2

∫ y

−∞
e−

(z−a)2

2b2 dz

Therefore, Y ∼ N(a, b2).

2. Let x = bz + a.

FY (y) = P(Y ≤ y) = P(X ≤ by + a) =
1√
2πb2

∫ by+a

−∞
e−

(x−a)2

2b2 dx =
1√
2π

∫ y

−∞
e−

z2

2 dz

Therefore, Y ∼ N(0, 1).

3. Let y = bz + a.

EY =
1√
2πb2

∫ ∞

−∞
ye−

(y−a)2

2b2 dy =
1√
2π

(∫ ∞

−∞
bze−

z2

2 dz +

∫ ∞

−∞
ae−

z2

2 dz

)
=

a√
2π

∫ ∞

−∞
e−

z2

2 dz = a(1) = a

Var(Y ) =
1√
2πb2

∫ ∞

−∞
(y − a)2e−

(y−a)2

2b2 dy =
b2√
2π

∫ ∞

−∞
z2e−

z2

2 dz =
−b2√
2π

∫ ∞

−∞
zd
(
e−

z2

2

)
=

b2√
2π

∫ ∞

−∞
e−

z2

2 dz = b2

Lemma 4.11. If X ∼ N(a, b2), then:

P(s ≤ X ≤ t) = P
(
s− a

|b|
≤ X − a

|b|
≤ t− a

|b|

)
= Φ

(
t− a

|b|

)
− Φ

(
s− a

|b|

)
Proof.
Just apply Lemma 4.2 and you would get the equation.
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Example 4.5. (Cauchy distribution) X ∼ Cauchy
Random variable X has a Cauchy distribution if it has a PDF:

fX(x) =
1

π(1 + x2)

It has the expectation

E|X| =
∫ ∞

−∞

|x|
π(1 + x2)

dx = 2

∫ ∞

0

x

π(1 + x2)
dx = ∞

There are also plenty of other continuous distributions. For example, Gamma distribution, Beta distribution, Weibull distribution,
etc. However, they are too complicated and we will not discuss them here.

4.3 Joint distribution function of continuous random variables

Again, we recall the definition of joint distribution function.

Definition 4.12. Joint distribution function (JCDF) of two continuous random variables X and Y is the function F : R2 →
[0, 1] such that:

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

Two continuous random variables X and Y are jointly continuous if the have a joint density function (JPDF) f : R2 → [0,∞)
such that:

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv fX,Y (x, y) =

∂2

∂x ∂y
FX,Y (x, y) P((X,Y ) ∈ D) =

∫∫
D

fX,Y (x, y) dx dy

We also recall the definition of marginal distribution function.

Definition 4.13. Given two continuous random variables X and Y . Marginal distribution function (Marginal PDF) of X given
Y is

FX(x) = P(X ≤ x) =

∫ ∞

−∞

∫ x

−∞
fX,Y (u, v) du dv =

∫ x

−∞

∫ ∞

−∞
fX,Y (u, v) dv du

fX(x) =

∫ ∞

−∞
fX,Y (x, u) dv

Similarly, we have the following extension of Theorem 4.8. However, we are not going to prove it here.

Theorem 4.14. If X and Y are jointly continuous random variables and g(X,Y ) is continuous random variable, then

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy

We can obtain the following important lemma.

Lemma 4.15. If X and Y are jointly continuous random variables, then for any a, b ∈ R,

E(aX + bY ) = aEX + bEY

Proof.

E(aX + bY ) =

∫ ∞

−∞

∫ ∞

−∞
(ax+ by)fX,Y (x, y) dx dy

=

∫ ∞

−∞
axfX(x) dx+

∫ ∞

−∞
byfY (y) dy

= aEX + bEY
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Example 4.6. Assume that a plane is ruled by horizontal lines separated by D and a needle of length L ≤ D is cast randomly on
the plane. What is the probability that the needle intersects some lines?
Let X be the distance from center of the needle to the nearest line and Θ be the acute angle between the needle and vertical line.
We have P(Intersection) = P

(
L
2 cosΘ ≥ X

)
.

Assume that X ⊥⊥ Θ. We have X ∼ U
[
0, D2

]
and Θ ∼ U

[
0, π2

]
.

fX,Θ(x, θ) =

{
4

Dπ , 0 ≤ x ≤ D
2 , 0 ≤ θ ≤ π

2

0, Otherwise

P
(
L

2
cosΘ ≥ X

)
=

∫∫
L
2 cos θ≥x

4

Dπ
10≤x≤D

2
10≤θ≤π

2
dx dθ =

∫ π
2

0

∫ L
2 cos θ

0

4

Dπ
dx dθ =

2L

Dπ

Suppose that we throw the needle for n times.

#{Intersection}
n

≈ P(Intersection) =
2L

Dπ

Combining two normal distributions into a joint distribution can be really useful.

Example 4.7. (Standard bivariate normal distribution) Two continuous random variablesX and Y are standard bivariate
normal if they have JPDF:

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
where ρ is a constant satisfying −1 < ρ < 1.

Remark 4.15.1. If X ∼ N(0, 1) and Y ∼ N(0, 1),

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx

=
1

2π
√
1− ρ2

∫ ∞

−∞
exp

(
− (x− ρy)2 + (1− ρ2)y

2(1− ρ2)

)
dx

=
1√
2π
e−

y2

2

∫ ∞

−∞

1√
2π(1− ρ2)

e
− (x−ρy)2

2(1−ρ2) dx

=
1√
2π
e−

y2

2

Remark 4.15.2. ρ is the correlation coefficient between X and Y and is given by

ρ =
cov(X,Y )√

Var(X)Var(Y )

Remark 4.15.3. If X ∼ N(0, 1) and Y ∼ N(0, 1),

cov(X,Y ) = E(XY )− EXEY = E(XY )

=

∫ ∞

−∞

∫ ∞

−∞

y√
2π
e−

y2

2
x√

2π(1− ρ2)
e
− (x−ρy)2

2(1−ρ2) dx dy

=

∫ ∞

−∞

y√
2π
e−

y2

2 ρy dy = ρ

∫ ∞

−∞
y2ϕ(y) dy = ρ

Example 4.8. (Bivariate normal distribution) Two continuous random variables X and Y are bivariate normal with means
µX and µY , variance σ

2
X and σ2

Y , and correlation coefficient ρ if JPDF is given by

fX,Y (x, y) =
1

2πσXσY
√
1− ρ2

exp

(
− 1

2(1− ρ2)

((
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
))

There are some remarks that may be important to know about.

Remark 4.15.4. X and Y are bivariate normal and uncorrelated ⇐⇒ X and Y are independent normal.
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Remark 4.15.5. X and Y are jointly continuous and they are both normal does not mean they are bivariate normal.

Example 4.9. Consider a JPDF of random variables X and Y

fX,Y (x, y) =

{
1
π e

− 1
2 (x

2+y2), xy > 0

0, xy ≤ 0

As you can see, this is not a bivariant normal distribution.
However, if you look at their marginal PDF,

fX(x) =

∫ ∞

0

1

π
e−

1
2 (x

2+y2) dy =
1

2π

∫ ∞

−∞
e−

1
2 (x

2+y2) dy =
1√
2π
e−

1
2x

2

x > 0

fX(x) =

∫ 0

−∞

1

π
e−

1
2 (x

2+y2) dy =
1

2π

∫ ∞

−∞
e−

1
2 (x

2+y2) dy =
1√
2π
e−

1
2x

2

x < 0

This is the same to fY (x).
Therefore, X and Y are jointly continuous and they are both normal does not mean they are bivariant normal.

Remark 4.15.6. Two random variables X and Y are jointly continuous and uncorrelated Gaussian does not mean they are
independent Gaussian.

4.4 Conditional distribution of continuous random variables

Recall the definition of conditional distribution function of discrete random variable Y given X = x.

FY |X(y|x) = P(Y ≤ y|X = x) =
P(Y ≤ y,X = x)

P(X = x)

However, for the continuous random variables, P(X = x) = 0 for all x. We take a limiting point of view.
Suppose the probability distribution function fX(x) > 0,

FY |X(y|x) = P(Y ≤ y|x ≤ X ≤ x+ dx) =
P(Y ≤ y, x ≤ X ≤ x+ dx)

P(x ≤ X ≤ x+ dx)

=

∫ y

−∞
∫ x+dx

x
fX,Y (u, v) du dv∫ x+dx

x
fX(u) du

≈
∫ y

−∞ fX,Y (x, v) dx dv

fX(x) dx

=

∫ y

−∞

fX,Y (x, v)

fX(x)
dv

Definition 4.16. Suppose X,Y : Ω → R are two continuous random variables with PDF fX(x) > 0 for some x ∈ R. Conditional
distribution function (Conditional CDF) of Y given X = x is defined by

FY |X(y|x) = P(Y ≤ y|X = x) =

∫ y

−∞

fX,Y (x, v)

fX(x)
dv

Conditional density function (Conditional PDF) of Y given X = x is defined by

fY |X(y|x) = ∂

∂y
FY |X(y|x) = fX,Y (x, y)

fX(x)

Remark 4.16.1. Since fX(x) can also be computed from f(x, y), we can simply compute

fY |X(y|x) = fX,Y (x, y)∫∞
−∞ fX,Y (x, y) dy
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Remark 4.16.2. More generally, for two continuous random variables X and Y with PDF fX(x) > 0 for some x ∈ R,

P(Y ∈ A|X = x) =

∫
A

fX,Y (x, v)

fX(x)
dv

=

∫
A

fY |X(y|x) dy

Example 4.10. Assume that two jointly continuous random variables X and Y have a JPDF:

fX,Y (x, y) =

{
1
x , 0 ≤ y ≤ x ≤ 1

0, Otherwise
=

1

x
10≤y≤x≤1

We want to compute fX(x) and fY |X(y|x). For x ∈ [0, 1],

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

−∞

1

x
10≤y≤x≤1 dy =

∫ x

0

1

x
dy = 1

Therefore, X ∼ U[0, 1].
For 0 ≤ y ≤ x and 0 ≤ x ≤ 1,

fY |X(y|x) = fX,Y (x, y)

fX(x)
=

1

x

Therefore, (Y |X = x) ∼ U[0, x].

Example 4.11. We want to find P(X2+Y 2 ≤ 1) with two jointly continuous random variables X and Y having JPDF in Example
4.10. Let Y ∈ Ax = {y : |y| ≤

√
1− x2}.

P(X2 + Y 2 ≤ 1|X = x) = P(|Y | ≤
√

1− x2|X = x) =

∫
Ax

fY |X(y|x) dy

=

∫
Ax∩[0,1]

1

x
dy

=

∫ min{x,
√
1−x2}

0

1

x
dy

= min{1,
√
x−2 − 1}

P(X2 + Y 2 ≤ 1) =

∫∫∫
x2+y2≤1

fX,Y (x, y) dy dx

=

∫∫∫
x2+y2≤1

fY |X(y|x) dyfX(x) dx

=

∫ 1

0

min{1,
√
x−2 − 1} dx

=

∫ 1√
2

0

dx+

∫ 1

1√
2

√
x−2 − 1 dx

=
1√
2
+

∫ π
2

π
4

(
1

sin θ
− sin θ

)
dθ (x = sin θ)

= ln

(
tan

θ

2

)∣∣∣∣π2
π
4

= ln(1)− ln(
√
2− 1) = ln(1 +

√
2)
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Example 4.12. Assume that random variables X ∼ N(0, 1) and Y ∼ N(0, 1) are standard bivariate normal. For −1 < ρ < 1,

fX,Y (x, y) =
1

2π
√
1− ρ2

exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
We want to find fX|Y (x|y).

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=
√
2πe

1
2y

2

fX,Y (x, y) (C1,y =
√
2πe

1
2y

2

)

=
1

√
2π
√
1− ρ2

e
1
2y

2− y2

2(1−ρ2) exp

(
−x

2 − 2ρxy

2(1− ρ2)

)
(C2,y = 1√

2π
√

1−ρ2
e

(
1
2−

1
2(1−ρ2

)
y2

)

=
1

√
2π
√
1− ρ2

e

(
1
2−

1
2(1−ρ2)

− ρ2

2(1−ρ2)

)
y2

exp

(
− (x− ρy)2

2(1− ρ2)

)
(C3,y = 1√

2π
√

1−ρ2
)

=
1

√
2π
√
1− ρ2

exp

(
− (x− ρy)2

2(1− ρ2)

)
Therefore, we have (X|Y = y) ∼ N(ρy, 1− ρ2). As ρ→ 1, we have X → Y . As ρ→ −1, we have X → −Y .
In general, there exists a random variable Z ∼ N(0, 1) such that

X = ρY +
√
1− ρ2Z (X|Y = y) = ρy +

√
1− ρ2Z

(
X
Y

)
=

(
ρ
√
1− ρ2

1 0

)(
Y
Z

)
We can see that bivariate normal distribution is a linear transform of two independent normal distribution.
More generally, for any orthogonal matrix A, we have two random variables W and U such that if they can be obtained by:(

W
U

)
=

(
ρ
√
1− ρ2

1 0

)
A

(
Y
Z

)
then W and U will also be bivariate normal with ρ.

With conditional density function defined, we can now define conditional expectation.

Definition 4.17. Given two continuous random variables X and Y and an event X = x for some x ∈ R. Conditional expecta-
tion of Y is defined by:

ψ(x) = E(Y |X = x) =

∫ ∞

−∞
yfY |X(y|x) dy

Given a continuous random variable X. Conditional expectation of Y is defined by:

ψ(X) = E(Y |X)

Again we also have the same properties of conditional distribution.

Lemma 4.18. (Law of total expectation) Conditional expectation ψ(X) = E(Y |X) for continuous random variables X and Y
satisfies:

EY = E(ψ(X))

Proof.

E(ψ(X)) =

∫ ∞

−∞
ψ(x)fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
yfY |X(y|x)fX(x) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y) dy dx

=

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y) dx dy

=

∫ ∞

−∞
yfY (y) dy = EY
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Lemma 4.19. Conditional expectation ψ(X) = E(Y |X) for continuous random variables X and Y satisfies:

E(Y g(X)) = E(ψ(X)g(X))

Proof.

E(ψ(X)g(X)) =

∫ ∞

−∞
ψ(x)g(x)fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
yfY |X(y|x)fX(x)g(x) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y)g(x) dy dx

= E(Y g(X))

4.5 Functions of continuous random variables

Given a continuous random variable X and a function g such that g(X) is still a random variable, we have Eg(X) =
∫∞
−∞ g(x)fX(x) dx.

Therefore, we only need fx(x) to compute Eg(X). However, very often, we want to know the distribution of g(X).

Example 4.13. Assume that X is continuous random variable with PDF fX(x). Let Y = g(X) be a continuous random variable.
How do we find the PDF fY (y)? We work with FY (y) first. Let g

−1(A) = {x ∈ R : g(x) ∈ A}.

FY (y) = P(Y ≤ y) = P(g(X) ∈ (−∞, y]) = P(X ∈ g−1((−∞, y])) =

∫
g−1((−∞,y])

fX(x) dx

fY (y) =
∂

∂y

∫
g−1((−∞,y])

fX(x) dx

Example 4.14. Let X ∼ N(0, 1). Let Y = g(X) = X2. We want to find the PDF fY (y).

FY (y) = P(Y ≤ y) = P(−√
y ≤ X ≤ √

y) = Φ(
√
y)− Φ(−√

y) = 2Φ(
√
y)− 1

fY (y) = F ′(y) = 2ϕ(
√
y)

(
1

2
√
y

)
=

1
√
y
ϕ(
√
y) =

{
1√
2πy

exp
(−y

2

)
, y > 0

0, y < 0

We have X2 ∼ χ2(1). (This is a distribution)

Theorem 4.20. In case that g(x) is strictly monotonic (strictly increasing or strictly decreasing) and differentiable, let Y = g(X).
We have

fY (y) =

{
fX(g−1(y))

∣∣∣ ∂
∂y g

−1(y)
∣∣∣ , if y = g(x) for some x

0, Otherwise

Proof.
If g(x) is a strictly increasing function,

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y))

fY (y) = F ′
Y (y) = fX(g−1(y))

∂

∂y
g−1(y) = fX(g−1(y))

∣∣∣∣ ∂∂y g−1(y)

∣∣∣∣
If g(x) is a strictly decreasing function,

FY (y) = P(g(X) ≤ y) = P(X ≥ g−1(y)) = 1− FX(g−1(y))

fY (y) = F ′
Y (y) = −fX(y−1(y))

∂

∂y
g−1(y) = fX(g−1(y))

∣∣∣∣ ∂∂y g−1(y)

∣∣∣∣
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We can consider the multivariable case.

Example 4.15. Suppose two random variables X and Y are jointly continuous with JPDF fX,Y . Given that U = g(X,Y ) and
V = h(X,Y ). What is fU,V (u, v)? For simplifying the process, we need to first make some following assumptions.

1. X,Y can be uniquely solved from U, V . (There exists only 1 pair of functions a, b such that X = a(U, V ) and Y = b(U, V ))

2. The function g and h are differentiable and the Jacobian determinant

J(x, y) =

∣∣∣∣∣ ∂g∂x ∂g
∂y

∂h
∂x

∂h
∂y

∣∣∣∣∣ ̸= 0

Then

fU,V (u, v) =
1

|J(x, y)|
fX,Y (x, y) =

{
1

|J(a(u,v),b(u,v))|fX,Y (a(u, v), b(u, v)), (u, v) = (g(x, y), h(x, y)) for some x, y

0, Otherwise

Example 4.16. Given two jointly continuous random variables X1, X2 and their JPDF fX1,X2 .
Let Y1 = X1 +X2 and Y2 = X1 −X2.

X1 =
Y1 + Y2

2
= a(Y1, Y2) X2 =

Y1 − Y2
2

= b(Y1, Y2) J(x1, x2) =

∣∣∣∣1 1
1 −1

∣∣∣∣ = −2

fY1,Y2
(y1, y2) =

1

|J(x1, x2)|
fX1,X2

(x1, x2) =
1

2
fX1,X2

(
y1 + y2

2
,
y1 − y2

2

)
More specifically, if X1 ∼ N(0, 1), X2 ∼ N(0, 1) and X1 ⊥⊥ X2,

fX1,X2(x1, x2) =
1√
2π
e−

1
2 (x

2
1+x2

2)

fY1,Y2(y1, y2) =
1

2
fX1,X2

(
y1 + y2

2
,
y1 − y2

2

)
=

1

4π
e
− 1

2

(
( 1

2 (y1+y2))
2
+( 1

2 (y1−y2))
2
)

=
1

4π
e−

1
4 (y

2
1+y2

2)

Therefore, Y1 ⊥⊥ Y2 and we have Y1 ∼ N(0, 2) and Y2 ∼ N(0, 2).

Example 4.17. Given two random variables X1 ∼ U[0, 1] and X2 ∼ U[0, 1]. If X1 ⊥⊥ X2, for all x1, x2 ∈ R,

fX1,X2(x1, x2) =

{
1, x1, x2 ∈ [0, 1]

0, Otherwise

fY1,Y2
(y1, y2) =

1

2
fX1,X2

(
y1 + y2

2
,
y1 − y2

2

)
=

1

2
10≤y1+y2≤2,0≤y1−y2≤2

Similar to discrete random variables, we can find the distribution of X + Y when X and Y are jointly continuous.

Theorem 4.21. If two jointly continuous random variables X and Y have JPDF fX,Y , then X + Y has a PDF

fX+Y (z) =

∫ ∞

−∞
fX,Y (x, z − x) dx =

∫ ∞

−∞
fX,Y (z − y, y) dy
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Proof.

FX+Y (z) = P(X + Y ≤ z)

=

∫∫
x+y≤z

fX,Y (x, y) dx dy

=

∫ ∞

−∞

∫ z−y

−∞
fX,Y (x, y) dx dy

=

∫ ∞

−∞

∫ z

−∞
fX,Y (v − y, y) dv dy (v = x+ y)

=

∫ z

−∞

∫ ∞

−∞
fX,Y (v − y, y) dy dv

fX+Y (z) = F ′
X+Y (z) =

∫ ∞

−∞
fX,Y (z − y, y) dy =

∫ ∞

−∞
fX,Y (x, z − x) dx

Definition 4.22. Given two independent continuous random variables X and Y . Convolution fX+Y (fX ∗ fY ) of PDFs of X
and Y is the PDF of X + Y :

fX+Y (z) =

∫ ∞

−∞
fX(z − y)fY (y) dy =

∫ ∞

−∞
fX(x)fY (z − x) dx

Example 4.18. If X ∼ U[0, 1] and Y ∼ U[0, 1]. In case of X ⊥⊥ Y ,

fX(t) = fY (t) =

{
1, 0 ≤ t ≤ 1

0, Otherwise

fX+Y (z) =

∫ ∞

−∞
fX(z − y)fY (y) dy

=

∫ 1

0

fX(z − y) dy

=

∫ 1

0

10≤z−y≤1 dy

=

∫ min{1,z}

max{0,z−1}
dy (z − 1 ≤ y ≤ z)

= min{1, z} −max{0, z − 1} =


z, 0 ≤ z ≤ 1

2− z, 1 ≤ z ≤ 2

0, Otherwise

The following example states that sum of independent normal random variables is still normal.

Example 4.19. If Xi ∼ N(µi, σ
2
i ) for i = 1, 2, · · · , n and they are independent, then

∑n
i=1Xi ∼ N

(∑n
i=1 µi,

∑n
i=1 σ

2
i

)
.
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Claim 4.22.1. It suffices to prove for the case n = 2.

Proof.
We first consider a special case when X ∼ N(0, σ2), Y ∼ N(0, 1) and X ⊥⊥ Y .

fX+Y (z) =

∫ ∞

−∞
fX(z − y)fY (y) dy

=

∫ ∞

−∞

1√
2πσ2

exp

(
− (z − y)2

2σ2

)(
1√
2π

exp

(
−y

2

2

))
dy

=

∫ ∞

−∞

1

2πσ
exp

(
− z2

2σ2

)
exp

(
− 1

2σ2
(−2yz + y2(1 + σ2))

)
dy

=

∫ ∞

−∞

1

2πσ
exp

(
− z2

2σ2
+

z2

2σ2(1 + σ2)

)
exp

(
−1 + σ2

2σ2

(
z2

(1 + σ2)2
− 2yz

1 + σ2
+ y2

))
dy

=

∫ ∞

−∞

1√
2π

√
1 + σ2

exp

(
− z2

2σ2
+

z2

2σ2(1 + σ2)

)(
1√

2π σ√
1+σ2

)
exp

−

(
y − z

1+σ2

)2
2
(

σ√
1+σ2

)2
 dy

=
1√

2π
√
1 + σ2

exp

(
− z2

2(1 + σ2)

)
Therefore, X + Y ∼ N(0, 1 + σ2). In general case when X1 ∼ N(µ1, σ

2
1), X2 ∼ N(µ2, σ

2
2) and X1 ⊥⊥ X2.

X1 +X2 = σ2

(
X1 − µ1

σ2
+
X2 − µ2

σ2

)
+ µ1 + µ2

We get X1−µ1

σ2
∼ N

(
0,

σ2
1

σ2
2

)
. Now we can apply this to special case and we get X1−µ1

σ2
+ X2−µ2

σ2
∼ N

(
0, 1 +

σ2
1

σ2
2

)
.

Therefore, X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2). By induction, if Xi ∼ N(µi, σ
2
i ) for i = 1, 2, · · · , n and they are independent, then

n∑
i=1

Xi ∼ N

(
n∑

i=1

µi,

n∑
i=1

σ2
i

)
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Summary

Definition

Definition 1. Sample space Ω is the set of all possible outcomes ω of an experiment. It represents the universe of all potential
results.

Definition 2. Event A is a subset of the sample space. Individual outcomes within A are referred to as elementary events.

Definition 3. The complement of a subset A is the set A∁, which includes all elements in the sample space Ω that are not part
of A.

Definition 4. A σ-field (or σ-algebra) F is a collection of subsets of Ω that satisfies the following conditions:

1. If A ∈ F , then A∁ ∈ F .

2. If Ai ∈ F for all i, then
⋃∞

i=1Ai ∈ F .

3. The empty set ∅ ∈ F .

Definition 5. A measurable space (Ω,F) consists of a sample space Ω and a σ-field F .

Definition 6. A probability measure P : F → [0, 1] is a function defined on a measurable space (Ω,F) that satisfies:

1. P(∅) = 0.

2. P(Ω) = 1.

3. If Ai ∈ F for all i and the sets Ai are disjoint, then:

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Definition 7. A probability space (Ω,F ,P) consists of:

1. A sample space Ω.

2. A σ-field F of subsets of Ω.

3. A probability measure P defined on (Ω,F).

Definition 8. We say a sequence of events An converges and limn→∞An exists if

lim sup
n→∞

An = lim inf
n→∞

An

Given a probability space (Ω,F ,P). Let Ai ∈ F for all i such that A = limn→∞An exists. Then

lim
n→∞

P(An) = P
(
lim
n→∞

An

)
Definition 9. Event A is null if P(A) = 0. This means A has no chance of occurring.

47
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Definition 10. Event A is almost surely if P(A) = 1. This indicates A occurs with certainty.

Definition 11. Given P(B) > 0. Conditional probability that A occurs given that B occurs is:

P(A|B) =
P(A ∩B)

P(B)

Definition 12. Events A and B are independent (A ⊥⊥ B) if P(A ∩B) = P(A)P(B).
Given Ak for all k ∈ I. If for all i ̸= j,

P(Ai ∩Aj) = P(Ai)P(Aj)

then they are pairwise independent.
If additionally, for all subsets J ⊆ I,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

then they are (mutually) independent.

Definition 13. Let A be a collection of subsets of Ω. The σ-field generated by A is:

σ(A) =
⋂
A⊆G

G

where G are also σ-field. σ(A) is the smallest σ-field containing A.

Definition 14. Product space of two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) is the probability space (Ω1 × Ω2,G,P12)
comprising:

1. a collection of ordered pairs Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}

2. a σ-algebra G = σ(F1 ×F2) where F1 ×F2 = {A1 ×A2 : A1 ∈ F1, A2 ∈ F2}

3. a probability measure P12 : F1 ×F2 → [0, 1] given by:

P12(A1 ×A2) = P1(A1)P2(A2)

for A1 ∈ F1, A2 ∈ F2.

Definition 15. Random variable is a function X : Ω → R with the property that:

X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} ∈ F

for any X ∈ R. We say the function is F-measurable.

Definition 16. Borel set is a set which can be obtained by taking countable union, intersection or complement repeatedly.

Definition 17. Borel σ-field B(R) of R is a σ-field that is generated by all open sets. It is a collection of Borel sets.

Definition 18. (Cumulative) distribution function (CDF) of a random variable X is a function FX : R → [0, 1] given by

FX(x) = P(X ≤ x) = P ◦X−1((−∞, x])

In discrete case, probabilty mass function (PMF) of discrete random variable X is the function f : R → [0, 1] given by:

fX(x) = P(X = x) = P ◦X−1({x}) FX(x) =
∑

i:xi≤x

f(xi) fX(x) = FX(x)− lim
y↑x

FX(y)

In continuous case, probability density function (PDF) of continuous random variable X is the function f : R → [0,∞) given
by:

FX(x) =

∫ x

−∞
f(u) du fX(x) =

∂

∂x
FX(x)
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Definition 19. Let Xi : Ω → R for all 1 ≤ i ≤ n be random variables. Random vector X⃗ = (X1, X2, · · · , Xn) : Ω → Rn with
properties:

X⃗−1(D) = {ω ∈ Ω : X⃗(ω) = (X1(ω), X2(ω), · · · , Xn(ω)) ∈ D} ∈ F

for all D ∈ B(Rn).

We can also say X⃗ is a random vector if
X−1

i (B) ∈ F

for all B ∈ B(R) and i.

Definition 20. Given a random vector (X,Y ). Joint distribution function (JCDF) FX,Y : R2 → [0, 1] is defined as:

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P ◦ (X,Y )−1((−∞, x]× (−∞, y])

In discrete case, joint probability mass function (JPMF) of jointly discrete random variable X and Y is the function
fX,Y : R2 → [0, 1] given by:

fX,Y (x, y) = P((X,Y ) = (x, y)) = P ◦ (X,Y )−1({x, y}) FX,Y (x, y) =
∑
u≤x

∑
v≤y

f(u, v)

In continuous case, joint probability density function (JPDF) of jointly continuous random variable X and Y is the function
fX,Y : R2 → [0,∞) given by:

fX,Y (x, y) =
∂2

∂x ∂y
FX,Y (x, y) FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv

Definition 21. Let X and Y be random variables. Marginal distribution function (Marginal CDF) is given by:

FX(x) = P(X−1((−∞, x]) ∩ Y −1((−∞,∞))) = lim
y→∞

FX,Y (x, y)

In discrete case, marginal mass function (Marginal PMF) is given by:

fX(x) =
∑
y

fX,Y (x, y)

In continuous case, marginal density function (Marginal PDF) is given by:

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy

Definition 22. Given a random variable X. Mean value, expectation, or expected value of X is given by:

EX =

{∑
x:fX(x)>0 xfX(x), X is discrete∫∞

−∞ xfX(x) dx, X is continuous

If it is absolutely convergent.

Definition 23. Given k ∈ N+ and a random variable X. k-th moment mk is defined to be:

E(Xk) =

{∑
x x

kfX(x), X is discrete∫∞
−∞ xkfX(x) dx, X is continuous

k-th cnetral moment αk is defined to be

E((X − EX)k) =

{∑
x(x− EX)kfX(x), X is discrete∫∞

−∞(x− EX)kfX(x) dx, X is continuous

Mean µ is the 1st moment µ = m1 = EX.
Variance is the 2nd central moment α2 = Var(X) = E((X − EX)2) = E(X2)− (EX)2.
Standard deviation σ is defined as σ =

√
Var(X).
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Definition 24. Two random variables X and Y are uncorrelated if E(XY ) = EXEY .

Definition 25. Covariance of two random variables X and Y is:

cov(X,Y ) = E((X − EX)(Y − EY )) = E(XY )− EXEY

Definition 26. Given two random variables X and Y . Conditional distribution function (Conditional CDF) of Y given
X = x for any x is defined by:

FY |X(y|x) = P(Y ≤ y|X = x) =

{P(Y≤y,X=x)
P(X=x) , X is discrete∫ y

−∞
fX,Y (x,v)

fX(x) dv, X is continuous

In discrete case, conditional mass function (Conditional PMF) of Y given X = x is defined by:

fY |X(y|x) =

{P(Y=y,X=x)
P(X=x) , X is discrete

∂
∂yFY |X(y|x) = fX,Y (x,y)

fX(x) , X is continuous

Definition 27. Given two random variables X and Y , and an event X = x for some X. Conditional expectation of random
variable Y is defined by:

ψ(x) = E(Y |X = x) =

{∑
y yfY |X(y|x), X and Y are discrete∫∞

−∞ yfY |X(y|x) dy, X and Y are continuous

Given a random variable X. Conditional expectation of random variable Y is defined by:

ψ(X) = E(Y |X) =

{∑
x ψ(x), X and Y are discrete∫∞

−∞ ψ(x) dx, X are continuous

Definition 28. Given X ⊥⊥ Y . In discrete case, convolution fX+Y (fX ∗ fY ) of PMFs of random variables X and Y is the PMF
of X + Y :

fX+Y (z) = P(X + Y − z) =
∑
x

fX(x)fY (z = x) =
∑
y

fX(z − y)fY (y)

In continuous case, convolution of PDFs of random variables X and Y is the PDF of X + Y :

fX+Y (z) =

∫ ∞

−∞
fX(z − y)fY (y) dy =

∫ ∞

−∞
fX(x)fY (z − x) dx

Named Property

Property 1. (Inclusion-Exclusion Principle) For any finite collection of events A1, A2, . . . , An:

P

(
n⋃

i=1

Ai

)
=
∑
i

P(Ai)−
∑
i<j

P(Ai ∩Aj) + · · ·+ (−1)n+1P(A1 ∩A2 ∩ · · · ∩An).

Property 2. (Law of Total Probability) Let {B1, B2, . . . , Bn} be a partition of Ω such that Bi ∩ Bj = ∅ for all i ̸= j and⋃n
i=1Bi = Ω. If P(Bi) > 0 for all i, then:

P(A) =
n∑

i=1

P(A | Bi)P(Bi).

Property 3. (Law of Total Expectation) Let ψ(X) = E(Y |X). Conditional expectation satisfies:

E(ψ(X)) = E(E(Y |X)) = E(Y )

Property 4. (Tail sum formula) If X has a PDF fX with fX(x) = 0 when x < 0, and a CDF FX , then:

EX =

∫ ∞

0

(1− FX(x)) dx
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Distributions

For discrete random variables,

Example 1. (Bernoulli distribution) X ∼ Bern(p)
Suppose we perform 1 Bernoulli trial. Let p be probability of success and X be number of successes.

FX(x) =


0, x < 0

1− p, 0 ≤ x < 1

1, x ≥ 1

fX(x) =


1− p, x = 0

p, x = 1

0, Otherwise

EX = p Var(X) = p(1− p)

Example 2. (Binomial distribution) Y ∼ Bin(n, p)
Suppose we perform n independent Bernoulli trials. Let p be the probability of success and Y = X1 + X2 + · · · + Xn be total
number of successes.

fY (k) =

(
n

k

)
pk(1− p)n−k FY (k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i EX = np Var(X) = np(1− p)

Example 3. (Trinomial distribution)
Suppose we perform n trials with three outcomes A, B and C, where the probability of occurrence is p, q and 1−p−q respectively.
Let X be number of occurrence of A and Y be number of occurrence of B.
Probability of x A’s, y B’s and n− x− y C’s is:

fX,Y (x, y) =
n!

x!y!(n− x− y)!
pxqy(1− p− q)n−x−y

Example 4. (Geometric distribution) W ∼ Geom(p) X ∼ Geom(p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be probability of success.
Let W be the waiting time which elapses before first success. For k ≥ 1,

fW (k) = p(1− p)k−1 FW (k) = 1− (1− p)k EW =
1

p
Var(W ) =

1− p

p2

Let X be number of failures before first success. For k ≥ 0,

fX(k) = p(1− p)k FX(k) = 1− (1− p)k+1 EX =
1− p

p
Var(X) =

1− p

p2

Example 5. (Negative Binomial distribution) Wr ∼ NBin(r, p) X ∼ NBin(r, p)
Suppose we keep performing independent Bernoulli trials until the first success shows up. Let p be the probability of success.
Let Wr be the waiting time which elapses before r-th success. For any k ≥ r,

fWr
(k) =

(
k − 1

r − 1

)
pr(1− p)k−r EWr =

r

p
Var(Wr) =

r(1− p)

p2

Let X be number of failures before the r-th success. For any k ≥ 0,

fX(k) =

(
k + r − 1

r − 1

)
pr(1− p)k EX =

r(1− p)

p
Var(X) =

r(1− p)

p2

Example 6. (Poisson distribution) X ∼ Poisson(λ)
Suppose we perform n independent Bernoulli trials. Let p be the probability of success, λ = np and X ∼ Bin(n, p). When n is
large, p is small, and np is moderate:

fX(k) =

(
n

k

)
pk(1− p)n−k ≈ λk

k!
e−λ FX(k) =

k∑
i=0

λi

i!
e−λ EX = λ Var(X) = λ



52 CHAPTER 4. CONTINUOUS RANDOM VARIABLES

For continuous random variables,

Example 7. (Uniform distribution) X ∼ U[a, b]
Random variable X is uniform on [a, b] is PDF and CDF is:

fX(x) =

{
1

b−a , a ≤ x ≤ b

0, Otherwise
FX(x) =


0, x < a
x−a
b−a , a ≤ x ≤ b

1, x > b

Example 8. (Exponential distribution) X ∼ Exp(λ)
Random variable X is exponential with parameter λ > 0 if PDF and CDF is:

fX(x) =

{
0, x < 0

λe−λx, x ≥ 0
FX(x) =

{
0, x < 0

1− e−λx, x ≥ 0

Example 9. (Normal distribution / Gaussian distribution) X ∼ N(µ, σ2)
Random variable X is normal if it has two parameter µ and σ2, and its PDF and CDF is:

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
FX(x) =

∫ x

−∞
fX(u) du EX = µ Var(X) = σ2

Random variable X is standard normal if µ = 0 and σ2 = 1. (X ∼ N(0, 1))

fX(x) = ϕ(x) =
1√
2π

exp

(
−x

2

2

)
FX(x) = Φ(x) =

∫ x

−∞
ϕ(u) du EX = 0 Var(X) = 1

Example 10. (Cauchy distribution) X ∼ Cauchy
Random variable X has a Cauchy distribution if:

fX(x) =
1

π(1 + x2)
E|X| =

∫ ∞

−∞

|x|
π(1 + x2)

dx = ∞

Example 11. (Bivariate normal distribution) Two random variables X and Y are bivariate normal with µX and µY , variance σ
2
X

and σ2
Y , and correlation coefficient ρ if:

fX,Y (x, y) =
1

2πσXσY
√
1− ρ2

exp

(
− 1

2(1− ρ2)

((
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
))

Two random variables X and Y are standard bivariate normal if µX = µY = 0 and σ2
X = σ2

Y = 1.

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)



Chapter 5

Generating function

5.1 Introduction of generating functions

A sequence of numbers a = {ai : i = 0, 1, 2, · · · } can hold a significant amount of information. For example, the values of a PMF
describe the distribution of discrete random variables.
A concise way to represent this information is by encapsulating the numbers in a generating function.

Definition 5.1. For any sequence {an : n = 0, 1, 2, · · · }, the generating function is defined as

Ga(s) =

∞∑
i=0

ais
i = lim

N↑∞

N∑
i=0

ais
i

for s ∈ R if the limit exists.

Remark 5.1.1. It can be observed that

ai =
G

(i)
a (0)

i!

Example 5.1. In some cases, it is not possible to interchange a countable sum with derivatives.
Let bn(x) =

sinnx
n such that a1(x) = b1(x) and an(x) = bn(x)− bn−1(x).

∞∑
n=0

an(x) = lim
N↑∞

∞∑
i=0

an(x) = lim
N↑∞

sinNx

N
= 0 (Squeeze Theorem)

lim
N↑∞

∂

∂x

∞∑
i=0

ai(x) = 0

lim
N↑∞

N∑
i=0

∂

∂x
an(x) = lim

N↑∞
cosNx does not exist

Convolutions are frequently encountered in probability theory, and generating functions serve as a valuable tool for analyzing them.

Definition 5.2. Let a = {ai : i ≥ 0} and b = {bi : i ≥ 0} be two sequences of real numbers. The convolution c = a ∗ b = {ci :
i ≥ 0} of {ai} and {bi} is defined as

cn =

n∑
i=0

aibn−i

Example 5.2. If an = fX(n) and bn = fY (n), then cn = fX+Y (n).

Claim 5.2.1. If sequences a and b have generating functions Ga(s) and Gb(s) respectively, then

Gc(s) = Ga(s)Gb(s)

Proof.

Gc(s) =

∞∑
n=0

cns
n =

∞∑
n=0

n∑
i=0

aibn−is
isn−i =

∞∑
i=0

ais
i

∞∑
n=i

bn−is
n−i =

∞∑
i=0

ais
i

∞∑
j=0

bjs
j = Ga(s)Gb(s)

53
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Example 5.3. Suppose that X ⊥⊥ Y . Let X ∼ Poisson(λ) and Y ∼ Poisson(µ). What is the distribution of Z = X + Y ?
Recall that fZ = fX ∗ fY . We let an = fX(n) and bn = fY (n).

GfX (s) =

∞∑
i=0

λie−λ

i!
si = eλ(s−1)

GfY (s) = eµ(s−1)

GfZ (s) = e(λ+µ)(s−1)

Suppose that X is a discrete random variable taking values in the non-negative integers. We can see how the generating function
works in probability.

Definition 5.3. Probability generating function (PGF) of a non-negative random variable X is

GX(s) = EsX =

∞∑
i=0

sifX(i)

We can see that the definition is a power series. We may want to know whether the series is convergent.

Definition 5.4. Radius of convergence R of power series is the half size of an interval such that the power series f(s) is
convergent. If s ∈ (−R,R), then f(s) is convergent. If s ∈ [−R,R]∁, then f(s) is divergent.
We can obtain the radius of convergence by applying the root test:

R =
1

lim supn→∞
n
√

|an|

Remark 5.4.1. We need to perform additional tests to find whether the power series converges at s = −R and s = R.

Remark 5.4.2. Sometimes, it is hard to compute R using the root test. One convenient way to compute R is using the ratio test.
If the limit exists,

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣
Here are some properties of power series involving the radius of convergence. We will not prove them since the proof is not important.

Theorem 5.5. If R is the radius of convergence of Ga(s) =
∑∞

i=0 ais
i, then

1. Ga(s) converges absolutely for all |s| < R and diverges for all |s| > R.

2. Ga(s) can be differentiated or integrated for any fixed number of times term by term if |s| < R.

∂i

∂si

∞∑
n=0

ans
n =

∞∑
n=0

∂i

∂si
ans

n

3. If R > 0 and Ga(s) = Gb(s) for all |s| ≤ R′ for some 0 < R′ ≤ R, then an = bn for all n.

Remark 5.5.1. For any sequence {an : n ≥ 0}, if the radius of convergence of Ga(s) is positive, then {an : n ≥ 0} is uniquely
determined by Ga(s) via

an =
1

n!
G(n)

a (0)

Remark 5.5.2. If an = fX(n) for some random variables X, then R ≥ 1 for GX(s) = Ga(s) since

∞∑
n=0

fX(n)sn

converges when s ∈ [−1, 1].
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Example 5.4. Let X ∼ Poisson(λ) and an = fX(n) = λne−λ

n! . By the ratio test,

an
an+1

=
n+ 1

λ
→ ∞

Therefore, R = ∞.

Example 5.5. Let X has a PMF an = fX(n) = c
n2 . By the ratio test,

an
an+1

=
(n+ 1)2

n
→ 1

Therefore, R = 1.

In fact, when s = 1, we can find the expectation of a distribution.

Example 5.6. By having s = 1,

∂

∂s
GX(s)

∣∣∣∣
s=1

=
∂

∂s

∞∑
i=0

fX(i)si

∣∣∣∣∣
s=1

=

∞∑
i=0

ifX(i)si

∣∣∣∣∣ =
∞∑
i=0

ifX(i) = EX

There is an important theorem regarding s = 1. Again, we are not going to prove it.

Theorem 5.6. (Abel’s Theorem) Suppose that an ≥ 0 for all n. If a has a generating function Ga(s) and radius of convergence
R = 1, then if

∑∞
n=0 converges in R ∪ {∞}, we have

lim
s↑1

Ga(s) =

∞∑
n=0

an lim
s↑1

sn =

∞∑
n=0

an

Example 5.7. We have some PGF of random variable X.

X ∼ Bern(p) GX(s) = ps1 + (1− p)s0 = 1− p+ ps

X ∼ Bin(n, p) GX(s) = (1− p+ ps)n

X ∼ Geom(p) GX(s) =

∞∑
n=1

(1− p)n−1psn =
ps

1− s(1− p)

X ∼ Poisson(λ) GX(s) = eλ(s−1)

We already know that by computing the derivatives of G at s = 0, we can get the probability sequence. The following theorem shows
that we can get the moment sequence by computing the derivatives of G at s = 1.

Theorem 5.7. If random variable X has a PGF GX(s), then

1. EX = lims↑1G
′(s) = G′(1)

2. E(X(X − 1) · · · (X − k + 1)) = G(k)(1)

3. Var(X) = G′′(1) +G′(1)− (G′(1))2

Proof.

1. This is proved in Example 5.6.

2. Let s < 1.

G(k)(s) =
∂k

∂sk

∑
n

fX(n)sn =
∑
n

n(n− 1) · · · (n− k + 1)sn−kfX(n) = E(sX−kX(X − 1) · · · (X − k + 1))

By applying Abel’s Theorem, we obtain

G(k)(1) = E(X(X − 1) · · · (X − k + 1))

3.
Var(X) = E(X2)− (EX)2 = E(X(X − 1)) + EX − (EX)2 = G′′(1) +G′(1)− (G′(1))2
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From Example 5.3, we can generalize it to study the sum of many other independent discrete random variables.

Theorem 5.8. If X ⊥⊥ Y , then GX+Y (s) = GX(s)GY (s).

Proof.

GX+Y (s) =

∞∑
z=0

z∑
x=0

fX(x)fY (z − x)sz =

∞∑
x=0

fX(x)sx
∞∑
z=x

fY (z − x)sz−x =

∞∑
x=0

fX(x)

∞∑
y=0

fY (z)s
y = GX(s)GY (s)

Interestingly, we can also use generating functions to deal with the sum of a random number of independent random variables.

Theorem 5.9. Let X1, X2, · · · be a sequence of independent identically distributed (i.i.d.) random variables with common PGF
GX(s) and N be a random variable independent of Xi for all i with PGF GN (s). If T = X1 +X2 + · · ·+XN , then

GT (s) = GN (GX(s))

Proof.

GT (s) = EsT = E(E(sT |N)) =
∑
n

E(sT |N = n)P(N = n) =
∑
n

E(sX1+X2+···+Xn |N = n)P(N = n) =
∑
n

(GX(s))nP(N = n)

= GN (GX(s))

Example 5.8. The sum of a Poisson number of independent Bernoulli random variables is still Poisson.
Let GN (t) = eλ(t−1) and GX(s) = 1− p+ ps.

GT (s) = GN (GX(s)) = eλ(1−p+ps−1) = eλp(s−1)

Therefore, T ∼ Poisson(λp).

When JPMF exists, there obviously will be a joint PGF.

Definition 5.10. Let random variables X1, X2 be both non-negative integer-valued, jointly discrete with JPMF fX1,X2
.

Joint probability generating function (JPGF) is defined by

GX1,X2
(s1, s2) = EsX1

1 sX2
2 =

∞∑
i=0

∞∑
j=0

si1s
j
2fX1,X2

(i, j)

Remark 5.10.1. We can find that

fX1,X2
(i, j) =

(
∂i

∂si1

∂j

∂sj2

GX1,X2
(s1, s2)

i!j!

)∣∣∣∣∣
(s1,s2)=(0,0)

Theorem 5.11. Random variables X,Y are independent if and only if GX,Y (s, t) = GX(s)GY (t).

Proof.
If X ⊥⊥ Y ,

GX,Y (s, t) =

∞∑
i=0

∞∑
j=0

sitjfX,Y (i, j) =

∞∑
i=0

sifX(i)

∞∑
j=0

tjfY (j) = GX(s)GY (t)

If GX,Y (s, t) = GX(s)GY (t), we consider the coefficient of terms sitj for all i ≥ 0 and j ≥ 0. We can see that

fX,Y (i, j) = fX(i)fY (j)

Therefore, X ⊥⊥ Y .

Remark 5.11.1. We know that if X1 ⊥⊥ X2, then GX1+X2(s) = EsX1+X2 = EsX1sX2 = GX1(s)GX2(s). Converse may not be
true.
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5.2 Applications of generating functions

The following example involves a simple random walk, which is discussed in Appendix A. Generating functions are particularly
valuable when studying random walks. So far, we have only considered random variables X taking finite values. In this application,
we encounter variables that can take the value +∞. For such variables X, GX(s) converges as long as |s| < 1 and

lim
s↑1

GX(s) =
∑
k

P(X = k) = 1− P(X = ∞)

Definition 5.12. A random variable X is defective if P(X = ∞) > 0.

Remark 5.12.1. It is not surprising that the expectation is infinite when the random variable is defective.

With this generalization, we can start discussing random walks.

Example 5.9. (Recurrence and transience of random walk) Let Sn be the position of the particle after n moves, and Xi be
independent and identically distributed random variables mentioned in Appendix A. For n ≥ 0,

Sn =

n∑
i=1

Xi S0 = 0 P(Xi = 1) = p P(Xi = −1) = q = 1− p

Let T0 be the number of moves until the particle makes its first return to the origin.

T0 = min{i ≥ 1 : Si = 0}

Is T0 a defective random variable? How do we calculate P(T0 = ∞)?
Let p0(n) be the probability of the particle returning to the origin at n moves, and P0 be the generating function of p0.
Let f0(n) be the probability of the particle first returning to the origin at n moves, and F0 be the generating function of f0.

p0(n) = P(Sn = 0) =

{(
n
n
2

)
p

n
2 q

n
2 , n is even

0, n is odd
P0(s) = lim

N↑∞

N∑
n=0

p0(n)s
n

f0(n) = P(S1 ̸= 0, S2 ̸= 0, · · · , Sn−1 ̸= 0, Sn = 0) = P(T0 = n) F0(s) = lim
N↑∞

N∑
n=1

f0(n)s
n

Theorem 5.13. From the definitions in Example 5.9, we have

1. P0(s) = 1 + P0(s)F0(s)

2. P0(s) = (1− 4pqs2)−
1
2

3. F0(s) = 1− (1− 4pqs2)
1
2
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Proof.

1. Let An = {Sn = 0} and Bk = {S1 ̸= 0, S2 ̸= 0, · · · , Sk−1 ̸= 0, Sk = 0}. p0(n) = P(An) and f0(k) = P(Bk).
By using the Law of total probability,

P(An) =

n∑
i=1

P(An|Bi)P(Bi)

p0(n) =

n∑
i=1

P(Sn = 0|S1 ̸= 0, S2 ̸= 0, · · · , Si−1 ̸= 0, Si = 0)f0(i)

=

n∑
i=1

P(Sn = 0|Si = 0)f0(i) (Markov property in Lemma A.1)

=

n∑
i=1

P(Sn−i = 0)f0(i) (Temporarily homogeneous property in Lemma A.1)

=

n∑
i=1

p0(n− k)f0(i)

p0(0) = 1

P0(s) =

∞∑
k=0

p0(k)s
k = 1 +

∞∑
k=1

p0(k)s
k = 1 +

∞∑
k=1

k∑
i=1

p0(k − i)f0(i)s
k

= 1 +

∞∑
i=1

∞∑
k=i

p0(k − i)sk−if0(i)s
i

= 1 + P0(s)F0(s)

2. If you want to understand the proof, search ”Central binomial coefficient” in Wikipedia
We know that Sn = 0 if n is even. Therefore,

P0(s) = lim
N↑∞

N∑
n=0

p0(n)s
n = lim

N↑∞

N∑
i=0

(
2i

i

)
piqis2i

= lim
N↑∞

N∑
i=1

(−1)i4i
(−1

2

i

)
piqis2i (

(−1
2
i

)
is a generalized binomial coefficient)

=
1√

1− 4pqs2

3. By applying (1) and (2), we can get

F0(s) =
P0(s)− 1

P0(s)
= 1−

√
1− 4pqs2

From this theorem, we can get the following corollary.

Corollary 5.14. The probability that the particle ever returns to the origin is

∞∑
n=1

f0(n) = F0(1) = 1− |p− q|

Probability that the particle will not return to origin ever is

P(T0 = ∞) = |p− q|

Proof.
By using Theorem 5.13, since p+ q = 1,

F0(1) = 1− (1− 4pq)
1
2 = 1− (p2 − 2pq + q2)

1
2 = 1− |p− q|
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Remark 5.14.1. A random walk is recurrent if it has at least one recurrent point. (P(X <∞) = 1)
A random walk is transient if it has no recurrent points. (P(X = ∞) > 0)
Notice that when p = q = 1

2 , P(T0 = ∞) and therefore the random walk is recurrent.
If p ̸= q, then P(T0 = ∞) ̸= 0 and so the random walk is transient.

Example 5.10. We use the Example 5.9 again. How do we calculate ET0 if p = q = 1
2?

F0(s) = 1−
√

1− s2 F ′
0(s) =

s√
1− s2

ET0 = lim
s↑1

F ′
0(s) = ∞

This means that although we find that the particle almost certainly returns to the origin, the expectation for the number of steps
needed to return to the origin is still infinite.

We move on to our next important application, which is the Branching Process. Many scientists have been interested in reproduction
in a population. Accurate models for evolution are extremely difficult to handle, but some non-trivial models are tractable. We will
investigate one of the models.

Example 5.11. (Galton-Watson process) This process investigates a population that evolves in generations.

Let Zn be the number of individuals of the n-th generation and X
(m)
i be the number of offspring of the i-th individual of the m-th

generation. We have:

Zn+1 =

{
X

(n)
1 +X

(n)
2 + · · ·+X

(n)
Zn
, Zn ≥ 1

0, Zn = 0

We make some following assumptions:

1. Family sizes of the individuals of the branching process form a collection of independent random variables.

(X
(k)
i ’s are independent)

2. All family sizes have the same probability mass function f and generating function G. (X
(k)
i ’s are identically distributed)

Assume that Z0 = 1. Note that Z1 = X
(0)
1

Theorem 5.15. Let Gn(s) = EsZn and G(s) = G1(s) = EsZ1 = EsX
(m)
i for all i and m. Then

Gn(s) = G(G(· · · (G(s)) · · · )) = G(Gn−1(s)) = Gn−1(G(s))

is the n-fold iteration of G.
This further implies

Gm+n(s) = Gm(Gn(s)) = Gn(Gm(s))

Proof.
When n = 2,

G2(s) = EsZ2 = EsX
(1)
1 +X

(1)
2 +···+X

(1)
Z1 = GZ1

(
G

X
(1)
1

(s)
)
= G(G(s))

.
When n = m+ 1 for some m,

Gm+1(s) = EsZm+1 = EsX
(m)
1 +X

(m)
2 +···+X

(m)
Zm = GZm

(
G

X
(m)
1

(s)
)
= Gm(G(s))

In principle, the above theorem tells us the distribution of Zn. However, it may not be easy to compute Gn(s).
The moments of Zn can be computed easier.

Lemma 5.16. Let EZ1 = EX(m)
i = µ and Var(Z1) = σ2. Then

EZn = µn Var(Zn) =

{
nσ2, µ = 1
σ2(µn−1)µn−1

µ−1 , µ ̸= 1
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Proof.
Using Theorem 5.15, we can get

EZ2 = G′
2(1) = G′(G(1))G′(1) = G′(1)µ = µ2

EZn = G′
n(1) = G′(Gn−1(1))G

′
n−1(1) = G′(1)µn−1 = µn

G′′
1(1) = σ2 + (G′(1))2 −G′(1) = σ2 + µ2 − µ

G′′
2(1) = G′′(G(1))(G′(1))2 +G′(G(1))G′′(1) = G′′(1)(µ2 + µ)

G′′
n(1) = G′′(Gn−1(1))(G

′
n−1(1))

2 +G′(Gn−1(1))G
′′
n−1(1)

= (σ2 + µ2 − µ)µ2n−2 + µG′′
n−1(1)

= µ2n−2(σ2 + µ2 − µ) + µ2n−3(σ2 + µ2 − µ) + · · ·+ µn−1(σ2 + µ2 − µ)

=
µn−1(σ2 + µ2 − µ)(µn − 1)

µ− 1

If µ = 1,

Var(Zn) = G′′
n(1) +G′

n(1)− (G′
n(1))

2 = σ2 +G′′
n−1(1) + 1− 1 = nσ2

If µ ̸= 1,

Var(Zn) = G′′
n(1) +G′

n(1)− (G′
n(1))

2 =
µn−1(σ2 + µ2 − µ)(µn − 1)

µ− 1
+ µn − µ2n =

µn−1σ2(µn − 1)

µ− 1

Example 5.12. Does this process eventually lead to extinction?
Note that

{ultimate extinction} =
⋃
n

{Zn = 0} = lim
n↑∞

{Zn = 0}

P(ultimate extinction) = P
(
lim
n↑∞

{Zn = 0}
)

= lim
n↑∞

P(Zn = 0) = lim
n↑∞

Gn(0)

Let ηn = Gn(0) and η = limn↑∞ ηn.

Theorem 5.17. We have that η is the smallest non-negative root of the equation

s = G(s)

Furthermore,

1. η = 1 if µ < 1

2. η < 1 if µ > 1

3. η = 1 if µ = 1 and σ2 > 0

4. η = 0 if µ = 1 and σ2 = 0

Proof.

ηn = Gn(0) = G(Gn−1(0)) = G(ηn−1)

We know that ηn is bounded. Therefore, ηn ↑ η for some η ∈ [0, 1].

η = lim
n↑∞

ηn = lim
n↑∞

G(µn−1) = G

(
lim
n↑∞

ηn−1

)
= G(η)

Suppose that there exists another non-negative root ψ.

η1 = G(0) ≤ G(ψ) = ψ

η2 = G(η1) ≤ G(ψ) = ψ

By induction, ηn ≤ ψ for all n and therefore η ≤ ψ. Therefore, η is the smallest non-negative root of the equation s = G(s).

G′′(s) =

∞∑
i=2

i(i− 1)si−2P(Z1 = i) ≥ 0
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Therefore, G is non-decreasing and also either convex or a straight line.
When µ ̸= 1, we can find that two curves y = G(s) and y = s intersect at s = 1 and s = k ∈ R.
We know that η ≤ 1 since η is the smallest root. In order to intersect at s = η, G′(η) ≤ 1.
If µ = G′(1) < 1, then η = 1. If µ = G′(1) > 1, then η = k such that G′(k) ≤ 1.
In the case when µ = G′(1) = 1, we need to further analyze whether y = G(s) intersects y = s at 1 point or infinite points.

σ2 = G′′(1) +G′(1)− (G′(1))2 = G′′(1)

If σ2 = G′′(1) > 0, then η = 1. If σ2 = G′′(1) = 0, then η = 0.

5.3 Expectation revisited

Recall that the expectations are given respectively by

EX =

{∑
xfX(x), X is discrete∫
xfX(x) dx, X is continuous

We want a notation which incorporates both these cases. Suppose that X has a CDF F . We can rewrite the equations as

EX =

{∑
x dFX(x), dFX(x) = FX(x)− limy↑x FX(y) = fX(x)∫
x dFX(x), dFX(x) = ∂F

∂x dx = fX(x) dx

Instead of using the regular Riemann integral, which cannot deal with discrete case, we can use the Riemann-Stieltjes integral, which
is a generalization of the Riemann integral.∫ b

a

g(x) dx = lim
maxi|xi+1−xi|

∑
i

g(x∗i )(xi+1 − xi)

∫ b

a

g(x) dF (x) = lim
maxi|xi+1−xi|

∑
i

g(x∗i )(F (xi+1)− F (xi))

if the limit does not depend on the choice of x∗i ∈ [xi, xi+1).

Definition 5.18. Expectation of a random variable X is given by:

EX =

∫
x dFX

Lemma 5.19. If g : R → R such that g(X) is also a random variable, then

E(g(X)) =

∫
g(x) dFX

Example 5.13. If g is regular (differentiable at every point and every values in the domain maps to a value in range), then∑
i

g(x∗i )(F (xi+1 − F (xi)) ≈
∑
i

g(x∗i )f(x
∗
i )(xi+1 − xi) ≈

∫
g(x)f(x) dx

Example 5.14. In irregular case, assume that the function g is the Dirichlet function. That is

1Q(x) =

{
1, x ∈ Q
0, x ̸∈ Q

∑
i

g(x∗i )(F (xi+1)− F (xi)) =
∑
i

g(x∗i )(xi+1 − xi)

Since the limit depends on the choice of x∗i , Riemann-Stieltjes integral of 1Q(x) with respect to F (x) = x is not well defined.
Therefore, E1Q(X) cannot be defined as a Riemann-Stieltjes integral. However, on the other hand,

E1Q(X) = P(1Q(x) = 1) = P ◦X−1(Q ∩ [0, 1]) = 0

With this notation, we can also change how we define PGF.

Definition 5.20. Probability generating function of a random variable X is given by:

EsX =

∫
sx dFX
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5.4 Moment generating function and Characteristic function

Now that we have unified the notations, we can now properly apply the probability generating function.
For a more general variables X, it is best if we substitute s = et. We get the following definition.

Definition 5.21. Moment generating function (MGF) of a random variable X is the function M : R → [0,∞) given by:

MX(t) = E(etX) =

∫
etx dFX

Remark 5.21.1. The definition of MGF only requires replacing s by et in PGF. MGF is easier for computing moments, but less
convenient for computing distribution.

Remark 5.21.2. MGFs are related to Laplace transforms.

We can easier get the following lemma.

Lemma 5.22. Given a MGF MX(t) of a random variable X.

1. For any k ≥ 0,
EXk =M (k)(0)

2. The function M can be expanded via Taylor’s Theorem within its radius of convergence.

M(t) =
∞∑
i=0

EXk

k!
tk

3. If X and Y are independent, then
MX+Y (t) =MX(t)MY (t)

Proof.

1.

M (k)(0) =
∂k

∂tk

∫
etx dFX(x)

∣∣∣∣
t=0

=

∫
xketx dFX(x)

∣∣∣∣
t=0

=

∫
xk dFX(x) = EXk

2. Just using (1) and Taylor’s Theorem and you get the answer.

3. This is just Theorem 5.8.

Remark 5.22.1. MX(0) = 1 for all random variables X.

Example 5.15. Let X ∼ Exp(1). For all x > 0, if t < 1,

fX(x) = e−x MX(t) =

∫ ∞

0

etx dFX(x) =

∫ ∞

0

e(t−1)x dx =
1

1− t

Example 5.16. Let X ∼ Cauchy.

fX(x) =
1

π(1 + x2)
MX(t) =

1

π

∫ ∞

−∞

etx

1 + x2
dx

MX(t) exists only at t = 0. We get MX(0) = 1.
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Moment generating functions provide a useful technique but the integrals used to define may not be finite. There is another class of
functions which finiteness is guaranteed.

Definition 5.23. Characteristic function (CF) of a random variable X is the function ϕX : R → C given by:

ϕX(t) = E(eitX) =

∫
eitx dFX(x) = E cos(tX) + iE sin(tX) i =

√
−1

Remark 5.23.1. ϕX(t) is essentially a Fourier Transform.

Lemma 5.24. CF ϕX of a random variable X has the following properties:

1. ϕX(0) = 1. |ϕX(t)| ≤ 1 for all t

2. ϕX(t) is uniformly continuous

Proof.

1. For all t,

ϕX(0) =

∫
dFX(x) = 1

|ϕX(t)| =
∣∣∣∣∫ (cos(tx) + i sin(tx)) dFX(x)

∣∣∣∣ ≤ ∫ |cos(tx) + i sin(tx)| dFX(x) =

∫
dFX(x) = 1

2.

sup
t

|ϕX(t+ c)− ϕX(t)| = sup
t

∣∣∣∣∫ (ei(t+c)x − eitx) dFX(x)

∣∣∣∣ ≤ sup
t

(∫ ∣∣eitx∣∣ ∣∣eicx−1
∣∣ dFX(x)

)
When c ↓ 0, the supremum → 0. Therefore, ϕX(t) is uniformly continuous.

Theorem 5.25. There are some properties of ϕX of a random variable X regarding derivatives and moments.

1. If ϕ
(k)
X (0) exists, then {

E |X|k <∞, k is even

E |X|k−1
<∞, k is odd

2. If E |X|k <∞, then ϕ
(k)
X (0) exists. We have

ϕX(t) =

k∑
j=0

ϕ
(j)
X (0)

j!
tj + o(tk) =

k∑
j=0

EXj

j!
(it)j + o(tk)

Proof.
We use the Taylor’s Theorem.

ϕX(t) =

k∑
j=0

ϕ
(j)
X (0)

j!
tj + o(tk) =

k∑
j=0

EXj

j!
(it)j + o(tk)

1.
ϕ
(k)
X (0) = ikEXk

If k is even, we have ϕ
(k)
X (0) = (−1)

k
2 EXk = (−1)

k
2 E |X|k exists. Therefore, E |X|k <∞.

If k is odd, we know that ϕ
(k−1)
X (0) exists if ϕ

(k)
X (0) exists.

Therefore, with ϕ
(k−1)
X (0) = (−1)

k−1
2 EXk−1 = (−1)

k−1
2 E |X|k−1

, E |X|k−1
<∞.

2. Again using the formula in (1). We have

ϕ
(k)
X (0)

ik
= EXk ≤ E |X|k <∞

Therefore, ϕ
(k)
X (0) exists. The formula can be obtained from the Taylor’s theorem formula.
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Theorem 5.26. If X ⊥⊥ Y , then ϕX+Y (t) = ϕX(t)ϕY (t)

Proof.

ϕX+Y (t) = E(eit(X+Y )) = E(eitX)E(eitY ) = ϕX(t)ϕY (t)

Again and again, we have a joint characteristic function.

Definition 5.27. Joint characteristic function (JCF) ϕX,Y of two random variables X,Y is given by

ϕX,Y (s, t) = E(ei(sX+tY ))

We have another way to prove that two random variables are independent.

Theorem 5.28. Two random variables X,Y are independent if and only if for all s and t,

ϕX,Y (s, t) = ϕX(s)ϕY (t)

Proof.
If X ⊥⊥ Y ,

ϕX,Y (s, t) = E(ei(sX+tY )) = E(eisX)E(eitY ) = ϕX(s)ϕY (t)

Currently, it is not suffice to prove the inverse. We will need to use a theorem later. (Example 5.22)

Example 5.17. Let X ∼ Bern(p). We have
ϕX(t) = E(eitX) = q + peit

Example 5.18. Let X ∼ Bin(n, p). We have
ϕX(t) = (q + peit)n

Example 5.19. Let X ∼ Exp(1). We have

ϕX(t) =

∫
e(it−1)x dx =

1

1− it

Example 5.20. Let X ∼ Cauchy. We have
ϕX(t) = e−|t|

Example 5.21. Let X ∼ N(µ, σ2). Using the fact that for any u ∈ C, not just in R,

1√
2πσ2

∫ ∞

−∞
exp

(
− (x− u)2

2σ2

)
dx = 1

We have

ϕX(t) =
1√
2πσ2

∫ ∞

−∞
eitx exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
−x

2 − (2µ+ 2σ2it)x+ µ2

2σ2

)
dx

=
1√
2πσ2

exp

(
(µ+ σ2it)2 − µ2

2σ2

)∫ ∞

−∞
exp

(
− (x− (µ+ σ2it))2

2σ2

)
dx

= exp

(
µ2 + 2σ2iµt− σ4t2 − µ2

2σ2

)
= exp

(
iµt− 1

2
σ2t2

)

Remark 5.28.1. We have a function called cumulant generating function defined by log ϕX(t). Normal distribution is the
only distribution we have learnt whose cumulant generating function has finite terms, which is:

log ϕX(t) = iµt− 1

2
σ2t2
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5.5 Inversion and continuity theorems

There are two major ways that characteristic functions are useful. One of them is that we can use characteristic function of a random
variable to generate a probability density function of that random variable.

Theorem 5.29. (Fourier Inverse Transform for continuous case) If a random variable X is continuous with a PDF fX and a CF
ϕX , then

fX(x) =
1

2π

∫ ∞

−∞
e−itxϕX(t) dt

at all point x which fX is differentiable.
If X has a CDF FX , then

FX(b)− FX(a) =
1

2π

∫ ∞

−∞

∫ b

a

e−itxϕX(t) dx dt

Proof.
We give you a non-rigorous proof. Let

I(x) =
1

2π

∫ ∞

−∞
eitxϕX(t) dt =

1

2π

∫ ∞

−∞
e−itx

∫ ∞

−∞
eityfX(y) dy dt

Iε(x) =
1

2π

∫ ∞

−∞
e−itx

∫ ∞

−∞
eityfX(y) dy e−

1
2 ε

2t2 dt

We want to show that Iε(x) → I(x) when ε ↓ 0.

Iε(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−

1
2 ε

2t2+i(y−x)tfX(y) dt dy

=
1√
2πε2

 1√
2π 1

ε2

∫ ∞

−∞
exp

(
− (y − x)2

2ε2

)
fX(y)

∫ ∞

−∞
exp

(
−
−
(
t− iy−x

ε

)2
2
(

1
ε2

) )
dt dy

=
1√
2πε2

∫ ∞

−∞
exp

(
− (y − x)2

2ϵ

)
fX(y) dy

Let Z ∼ N(0, 1) and Zε = εZ. Iε(x) is the PDF of εZ +X. Therefore, we can say that fεZ+X(x) → fX(x) when ε ↓ 0.
Note that this proof is not rigorous.

Theorem 5.30. (Inversion Theorem) If a random variable X have a CDF FX and a CF ϕX , we define FX : R → [0, 1] by

FX(x) =
1

2

(
FX(x) + FX(x−)

)
Then for all a ≤ b,

FX(b)− FX(a) =

∫ ∞

−∞

e−iat − e−ibt

2πit
ϕX(t) dt

Remark 5.30.1. We can say FX represents the average of limit going from two directions.

Example 5.22. With the Inversion Theorem, we can now prove Theorem 5.28.
Given two random variables X,Y . We want to first extend the Fourier Inverse Transform into multivariable case.
If ϕX,Y (s, t) = ϕX(s)ϕY (t), then for any a ≤ b and c ≤ d,

FX,Y (b, d)− FX,Y (b, c)− FX,Y (a, d) + FX,Y (a, c) =

∫ ∞

−∞

∫ ∞

−∞

(e−ias − e−ibs)(e−ict − e−idt)

−4π2t2
ϕX(s)ϕY (t) ds dt

= (FX(b)− FX(a))

∫ ∞

−∞

e−ict − e−idt

2πit
ϕY (t) dt

= (FX(b)− FX(a))(FY (d)− FY (c))

= FX(b)FY (d)− FX(b)FY (c)− FX(a)FY (d) + FX(a)FY (c)

From the definition of independent random variables, we prove that X ⊥⊥ Y if ϕX,Y (s, t) = ϕX(s)ϕY (t).
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Another way is to evaluate the convergence of a sequence of cumulative distribution function.

Definition 5.31. (Convergence of distribution function sequence [Weak convergence]) A sequence of CDF F1, F2, · · · converges
to a CDF F , written as Fn → F , if at each point x where F is continuous,

Fn(x) → F (x)

Example 5.23. Assume we have two sequences of CDF.

Fn(x) =

{
0, x < 1

n

1, x ≥ 1
n

Gn(x) =

{
0, x < − 1

n

1, x ≥ − 1
n

If we have n→ ∞, we get

F (x) =

{
0, x ≤ 0

1, x > 0
G(x) =

{
0, x < 0

1, x ≥ 0

This is problematic because F (x) in this case is not a distribution function because it is not right-continuous.
Therefore, it is needed to define the convergence so that both sequences {Fn} and {Gn} have the same limit.

We can modify a bit on the definition to say each distribution function in the sequence represents a different random variable.

Definition 5.32. (Convergence in distribution for random variables) Let X,X1, X2, · · · be a family of random variables with PDF

F, F1, F2, · · · , we say Xn → X, written as Xn
D−→ X or Xn ⇒ X, if Fn → F .

Remark 5.32.1. For this convergence definition, we do not care about the closeness of Xn and X as functions of ω.

Remark 5.32.2. Sometimes, we also write Xn ⇒ F or Xn
D−→ F .

With the definition, sequence of characteristic functions can be used to determine whether the sequence of cumulative distribution
function converges.

Theorem 5.33. (Lévy continuity theorem) Suppose that F1, F2, · · · is a sequence of CDF with CF ϕ1, ϕ2, · · · , then

1. If Fn → F for some CDF F with CF ϕ, then ϕn → ϕ pointwise.

2. If ϕn → ϕ pointwise for some CF ϕ, and ϕ is continuous at O (t = 0), then ϕ is the CF of some CDF F and Fn → F .

We have a more general definition of convergence.

Definition 5.34. (Vague convergence) Given a sequence of CDF F1, F2, · · · . Suppose that Fn(x) → G(x) at all continuity

point of G but G may not be a CDF. Then we say Fn → G vaguely, written as Fn
v−→ G.

Example 5.24. If

Fn(x) =


0, x < 1

n
1
2 ,

1
n ≤ x < n

1, x ≥ n

G(x) =

{
0, x < 0
1
2 , x ≥ 0

We can see that Fn
v−→ G if n→ ∞ and G is not a CDF.

Remark 5.34.1. In Theorem 5.33 (2), the statement that ϕ is continuous at O can be replaced by any of the following statements:

1. ϕ(t) is a continuous function of t

2. ϕ(t) is a CF of some CDF

3. The sequence {Fn}∞n=1 is tight, i.e. for all ϵ > 0, there exists Mϵ > 0 such that

sup
n
(Fn(−Mϵ) + 1− Fn(Mϵ)) ≤ ϵ
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Example 5.25. Let Xn ∼ N(0, n2) and let ϕn be the CF of Xn. Then

ϕn(t) = exp

(
−1

2
n2t2

)
→ ϕ(t) =

{
0, t ̸= 0

1, t = 0

5.6 Two limit theorems

In this section, we introduce two fundamental theorems in probability theory: the Law of Large Numbers and the Central Limit
Theorem.

Theorem 5.35. (Weak Law of Large Numbers [WLLN]) Let X1, X2, · · · be i.i.d. random variables. Assume that E |X1| <∞
and EX1 = µ. Let Sn =

∑n
i=1Xi. Then

1

n
Sn

D−→ µ

Proof.
We recall the Taylor expansion of ϕξ(s) at 0. If E |ξ|k <∞ and s is small, then

ϕζ(s) =

k∑
j=0

Eξj

j!
(is)j + o(sk)

For any t ∈ R, let ϕX1
(s) = E(eisX1).

ϕn(t) = E
(
exp

(
it

n
Sn

))
= E

(
n∏

i=1

exp

(
itXi

n

))
=

(
E
(
exp

(
itX1

n

)))n

=

(
ϕX1

(
t

n

))n

=

(
1 +

it

n
EX1 + o

(
t

n

))n

=

(
1 +

iµt

n
+ o

(
t

n

))n

→ eiµt

By Lévy continuity theorem, we get that 1
nSn

D−→ µ.

Theorem 5.36. (Central Limit Theorem [CLT]) Let X1, X2, · · · be i.i.d. random variables with E |X1|2 < ∞ and EX1 = µ,
Var(X1) = σ2, Sn =

∑n
i=1Xi. Then

1

σ

√
n

(
1

n
Sn − µ

)
=
Sn − nµ√

nσ

D−→ N(0, 1)

Proof.
Let Yi =

Xi−µ
σ . We have EYi = 0 and Var(Yi) = 1.

Sn − nµ√
nσ

=

n∑
i=1

1√
n

Xi − µ

σ
=

n∑
i=1

Yi√
n

ϕn(t) = E

(
exp

(
it

n∑
ℓ−1

Yℓ√
n

))

=

(
E
(
exp

(
itY1√
n

)))n

=

(
ϕY1

(
t√
n

))n

=

(
1 +

it√
n
EY1 +

1

2

(
it√
n

)2

E(Y 2
i ) + o

(
t2

n

))n

(Taylor expansion)

=

(
1− t2

2n
+ o

(
t2

n

))n

→ e−
1
2 t

2

By Lévy continuity theorem, Sn−nµ√
nσ

D−→ N(0, 1).

Central Limit Theorem can be generalized in several directions, one of which concerns independent random variables instead of i.i.d.
random variables.
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Theorem 5.37. Let X1, X2, · · · be independent random variables satisfying EXi = 0, Var(Xi) = σ2
i , E |Xi|3 <∞ and such that

1

(σ(n))3

n∑
i=1

E
∣∣X3

i

∣∣→ 0 as n→ ∞ (*)

where (σ(n))2 = Var(
∑n

i=1Xi) =
∑n

i=1 σ
2
i . Then

1

σ(n)

n∑
i=1

Xi
D−→ N(0, 1)

Remark 5.37.1. The condition (*) means that none of the random variables Xi can be significant in the sum Sn.

1

(σ(n))3

n∑
i=1

|Xi|3 ≲
1

σ(n)
max

i=1,2,··· ,n
|Xi|

(
1

(σ(n))2

) n∑
i=1

(Xi)
2 ≈ 1

σ(n)
max

i=1,2,··· ,n
|Xi| → 0
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Chapter 7

Convergence of Random Variables

In Chapter 5, we discussed convergence in distribution. However, this is not the only significant mode of convergence for random
variables. In this chapter, we will explore other modes of convergence.

7.1 Modes of Convergence

We will discuss various modes of convergence for a sequence of random variables.
Let us first recall the convergence modes for real functions. Let f, f1, f2, · · · : [0, 1] → R.

1. Pointwise Convergence
We say fn → f pointwise if, for all x ∈ [0, 1],

fn(x) → f(x) as n→ ∞

2. Convergence in Norm ∥·∥
We say fn → f in norm ∥·∥ if

∥fn − f∥ → 0 as n→ ∞

3. Convergence in Lebesgue (Uniform) Measure
We say fn → f in uniform measure µ if, for all ϵ > 0,

µ ({x ∈ [0, 1] : |fn(x)− f(x)| > ϵ}) → 0 as n→ ∞

These definitions can be extended to define convergence modes for random variables.

Definition 7.1. (Almost Sure Convergence) We say Xn → X almost surely, denoted as Xn
a.s.−−→ X, if

P({ω ∈ Ω : Xn(ω) → X(ω) as n→ ∞}) = 1 or P({ω ∈ Ω : Xn(ω) ̸→ X(ω) as n→ ∞}) = 0

Remark 7.1.1. Xn
a.s.−−→ X is an adaptation of pointwise convergence for functions.

Remark 7.1.2. Almost sure convergence is often referred to as:

1. Xn → X almost everywhere (Xn
a.e.−−→ X)

2. Xn → X with probability 1 (Xn → X w.p. 1)

Definition 7.2. (Convergence in r-th Mean) Let r ≥ 1. We say Xn → X in r-th mean, denoted as Xn
r−→ X, if

E |Xn −X|r → 0 as n→ ∞

Example 7.1. If r = 1, we say Xn → X in mean or expectation.
If r = 2, we say Xn → X in mean square.

Definition 7.3. (Convergence in Probability) We say Xn → X in probability, denoted as Xn
P−→ X, if, for all ε > 0,

P(|Xn −X| > ε) → 0 as n→ ∞
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Definition 7.4. (Convergence in Distribution) We say Xn → X in distribution, denoted as Xn
D−→ X, if, at continuity points

of P(X ≤ x),
Fn(x) = P(Xn ≤ x) → P(X ≤ x) = F (x) as n→ ∞

Before exploring the relationships between different convergence modes, we first introduce some key formulas.

Lemma 7.5. (Markov’s Inequality) If X is any random variable with a finite mean, then for all a > 0,

P(|X| ≥ a) ≤ E |X|
a

Proof.

P(|X| ≥ a) = E(1|X|≥a) ≤ E
(
|X|
a

1|X|>a

)
≤ E |X|

a

Remark 7.5.1. For any non-negative function φ that is increasing on [0,∞),

P(|X| ≥ a) = P(φ(|X|) ≥ φ(a)) ≤ E(φ(|X|))
φ(a)

The following inequality requires Hölder’s inequality (see Appendix C) for its proof. Therefore, we will not prove it here.

Lemma 7.6. (Lyapunov’s Inequality) Let Z be any random variable. For all r ≥ s > 0,

(E |Z|s) 1
s ≤ (E |Z|r) 1

r

We also need to understand how to achieve almost sure convergence.

Lemma 7.7. Let

An(ε) = {ω ∈ Ω : |Xn(ω)−X(ω)| > ε} Bm(ε) =

∞⋃
n=m

An(ε)

We have

1. Xn
a.s.−−→ X if and only if limm↑∞ P(Bm(ε)) = 0 for all ε > 0.

2. Xn
a.s.−−→ X if

∑∞
n=1 P(An(ε)) <∞ for all ε > 0.

Proof.

1. We denote C = {ω ∈ Ω : Xn(ω) → X(ω) as n→ ∞}.
If ω ∈ C, it means that for all ε > 0, there exists n0 > 0 such that |Xn(ω)−X(ω)| ≤ ε for all n ≥ n0.
This also implies that for all ε > 0, |Xn(ω)−X(ω)| > ε for finitely many n.
If ω ∈ C∁, it means that for all ε > 0, |Xn(ω)−X(ω)| > ε for infinitely many n. (ω ∈

⋂∞
m=1

⋃∞
n=mAn(ε))

Therefore,

C∁ =
⋃
ε>0

∞⋂
m=1

∞⋃
n=m

An(ε)

If P(C∁) = 0, then for all ε > 0,

P

( ∞⋂
m=1

∞⋃
n=m

An(ε)

)
= 0

We can also find that

P

( ∞⋂
m=1

∞⋃
n=m

An(ε)

)
= 0 =⇒ P(C∁) = P

(⋃
ε>0

∞⋂
m=1

∞⋃
n=m

An(ε)

)
= P

( ∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

An

(
1

k

))
= 0

Therefore, Xn
a.s.−−→ X if and only if limm↑∞ P(Bm(ε)) = 0 for all ε > 0.

2. From (1), for all ε > 0,

∞∑
n=1

P(An(ε)) <∞ =⇒ lim
m→∞

∞∑
n=m

P(An(ε)) = 0 =⇒ lim
m→∞

P(Bm(ε)) = 0 =⇒ (Xn
a.s.−−→ X)
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Lemma 7.8. There exist sequences that

1. converge almost surely but not in mean.

2. converge in mean but not almost surely.

Proof.

1. We consider

Xn =

{
n3, Probability = n−2

0, Probability = 1− n−2

By applying Lemma 7.7, for some ε > 0.

P(|Xn(ω)−X(ω)| > ε) =
1

n2

∞∑
n=1

P(|Xn(ω)−X(ω)| > ε) <∞

Therefore, the sequence converges almost surely. However,

E |Xn −X| = n3
(

1

n2

)
= n→ ∞

Therefore, the sequence does not converge in mean.

2. We consider

Xn =

{
1, Probability = n−1

0, Probability = 1− n−1

In mean, as n→ ∞ we have

E |Xn −X| = 1

(
1

n

)
=

1

n
→ 0

However, by applying Lemma 7.7, if ε ∈ (0, 1), for all n

P(Bm(ε)) = 1− lim
r→∞

P(Xn = 0 for all n such that m ≤ n ≤ r)

= 1− lim
r→∞

r∏
i=m

i− 1

i

= 1− lim
r→∞

m− 1

r
→ 1 ̸= 0

Therefore, the sequence does not converge almost surely.

We can now deduce the following implications. Roughly speaking, convergence in distribution is the weakest among all convergence
modes, since it only cares about the distribution of Xn.

Theorem 7.9. The following implications hold:

1. (a) (Xn
a.s.−−→ X) =⇒ (Xn

P−→ X)

(b) (Xn
r−→ X) =⇒ (Xn

P−→ X)

(c) (Xn
P−→ X) =⇒ (Xn

D−→ X)

2. If r ≥ s ≥ 1, then (Xn
r−→ X) =⇒ (Xn

s−→ X)

3. No other implications holds in general.
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Proof.

1. (a) From Lemma 7.7, for all ε > 0,

P(Am(ε)) ≤ P

( ∞⋃
n=m

An(ε)

)
= P(Bm(ε)) → 0

Therefore, (Xn
a.s.−−→ X) =⇒ (Xn

P−→ X)

(b) From Markov’s inequality, since r ≥ 1,

0 ≤ P(|X −Xn| > ε) = P(|X −Xn|r > εr) ≤ E |Xn −X|r

εr

Therefore, if Xn
r−→ X, then E |Xn −X|r → 0. We have P(|X −Xn| > ε) → 0 and thus Xn

P−→ X.

(c)

P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε) ≤ P(X ≤ x+ ε) + P(|Xn −X| > ε)

P(X ≤ y) ≤ P(Xn ≤ y + ε) + P(|Xn −X| > ε)

P(Xn ≤ x) ≥ P(X ≤ x− ε)− P(|Xn −X| > ε) (y = x− ε)

Since Xn
P−→ X, P(|Xn −X| > ε) → 0 for all ε > 0. Therefore,

P(X ≤ x− ε) ≤ lim inf
n→∞

P(Xn ≤ x) ≤ lim sup
n→∞

P(Xn ≤ x) ≤ P(X ≤ x+ ε)

By having ε ↓ 0,
P(X ≤ x) ≤ lim inf

n→∞
P(Xn ≤ x) ≤ lim sup

n→∞
P(Xn ≤ x) ≤ P(X ≤ x)

Therefore, limn→∞ P(Xn ≤ x) = P(X ≤ x) and thus Xn
D−→ X.

2. Since Xn
r−→ X, E |Xn −X| → 0 as n→ ∞. By Lyapunov’s inequality, if r ≥ s,

E |Xn −X|s ≤ (E |Xn −X|r) s
r → 0

3. Let Ω = {H,T} and P(H) = P(T ) = 1
2 . Let

X2m(ω) =

{
1, ω = H

0, ω = T
X2m+1(ω) =

{
0, ω = H

1, ω = T

Since F (x) and Fn(x) for all n are all the same, Xn
D−→ X. However, for ε ∈ [0, 1], P(|Xn −X| > ε) ̸→ 0.

Therefore, (Xn
D−→ X) ≠⇒ (Xn

P−→ X).
Let r = 1 and

Xn =

{
n, probability = 1

n

0, probability = 1− 1
n

X = 0

We get that P(|Xn −X| > ε) = 1
n → 0. However, E |Xn −X| = n

(
1
n

)
= 1 ̸→ 0. Therefore, (Xn

P−→ X) ≠⇒ (Xn
r−→ X).

Let Ω = [0, 1], F = B([0, 1]) and P be uniform.
Let Ii be such that I 1

2m(m−1)+1, I 1
2m(m−1)+2, · · · , I 1

2m(m−1)+m is a partition of [0, 1] for all m.

We have I1 = [0, 1], I2 ∪ I3 = [0, 1], · · · . Let

Xn(ω) = 1In(ω) =

{
1, ω ∈ In

0, ω ∈ I∁n
X(ω) = 0 for all ω ∈ Ω

For all ε ∈ [0, 1], P(|Xn −X| > ε) = P(In) = 1
n → 0 for some n if n→ ∞.

However, for any given ω ∈ Ω, although 1 becomes less often due to decreasing probability, it never dies out.

Therefore, Xn(ω) ̸→ 0 = X(ω) and P({ω ∈ Ω : Xn(ω) → X(ω) as n→ ∞}) = 0, and thus, (Xn
P−→ X) ≠⇒ (Xn

a.s.−−→ X).
If r ≥ s ≥ 1, let

Xn =

{
n, probability = n−(

r+s
2 )

0, probability = 1− n−(
r+s
2 ) X = 0

E |Xn −X|s = ns
(
n−(

r+s
2 )
)
= n

s−r
2 → 0 E |Xn −X|r = nr

(
n−(

r+s
2 )
)
= n

r−s
2 → ∞

Therefore, if r ≥ s ≥ 1, (Xn
s−→ X) ≠⇒ (Xn

r−→ X).

We have proven that (Xn
a.s.−−→ X) ≠⇒ (Xn

r−→ X) and (Xn
r−→ X) ≠⇒ (Xn

a.s.−−→ X) in Lemma 7.8.
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By applying Theorem 7.9, we can easily obtain this lemma.

Lemma 7.10. The following implications hold:

1. (Xn
1−→ X) =⇒ (Xn

P−→ X)

Some of the implications do not hold in general but they hold if we apply some restrictions.

Theorem 7.11. (Partial Converse Statements) The following implications hold:

1. If Xn
D−→ c, where c is a constant, then Xn

P−→ c.

2. If Xn
P−→ X and P(|Xn| ≤ k) = 1 for all n with some fixed constant k > 0, then Xn

r−→ X for all r ≥ 1.

Proof.

1. Since Xn
D−→ X, P(Xn ≤ x) → P(c ≤ x) as n→ ∞. For all ε > 0,

P(|Xn − c| ≥ ε) = P(Xn ≤ c− ε) + P(Xn ≥ c+ ε) = P(Xn ≤ c− ε) + 1− P(Xn < c+ ε)

We can get that P(Xn ≤ c− ε) → P(c ≤ c− ε) = 0. For P(Xn < c+ ε),

P
(
Xn ≤ c+

ε

2

)
≤ P(Xn < c+ ε) ≤ P(Xn ≤ c+ 2ε)

P
(
Xn ≤ c+

ε

2

)
→ P

(
c ≤ c+

ε

2

)
= 1 P(Xn ≤ c+ 2ε) → P(c ≤ c+ 2ε) = 1

Therefore, P(Xn < c+ ε) → 1. We have
P(|Xn − c| ≥ ε) → 0 + 1− 1 = 0

Therefore, Xn
P−→ c.

2. Since Xn
P−→ X, Xn

D−→ X. We have P(|Xn| ≤ k) → P(|X| ≤ k) = 1.
Therefore, for all ε > 0, if |Xn −X| ≤ ε, |Xn −X| ≤ |Xn|+ |X| ≤ 2k.

E |Xn −X|r = E
(
|Xn −X|r 1|Xn−X|≤ε

)
+ E

(
|Xn −X|r 1|Xn−X|>ε

)
≤ εrE

(
1|Xn−X|≤ε

)
+ (2k)rE

(
1|Xn−X|>ε

)
≤ εr + ((2k)r − εr)P(|Xn −X| > ε)

Since Xn
P−→ X, as n→ ∞, E |Xn −X|r → εr. If we send ε ↓ 0, E |Xn −X|r → 0 and therefore Xn

r−→ X.

Note that any sequence {Xn} which satisfies Xn
P−→ X necessarily contains a subsequence {Xni

: 1 ≤ i <∞} which converges almost
surely.

Theorem 7.12. If Xn
P−→ X, then there exists a non-random increasing sequence of integers n1, n2, · · · such that as i→ ∞,

Xni

a.s.−−→ X

Proof.

Since Xn
P−→ X, P(|Xn −X| > ε) → 0 as n→ ∞ for all ε > 0.

We can pick an increasing sequence n1, n2, · · · of positive integers such that

P(|Xni
−X| > i−1) ≤ i−2

For any ε > 0, ∑
i>ε−1

P(|Xni
−X| > ε) ≤

∑
i>ε−1

P(|Xni
−X| > i−1) ≤

∑
i

i−2 <∞

By Lemma 7.7, we get the Xni

a.s.−−→ X as i→ ∞
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7.2 Other Versions of the Weak Law of Large Numbers

Let us revisit and introduce additional versions of the Weak Law of Large Numbers (WLLN) and their applications.

Theorem 7.13. (L2-WLLN) Let X1, X2, · · · , Xn be uncorrelated random variables with EXi = µ and Var(Xi) ≤ c <∞ for all i.
Let Sn =

∑n
i=1Xi. Then

Sn

n

2−→ µ

Proof.

E
(
Sn

n
− µ

)2

=
E(Sn − ESn)

2

n2
=

1

n2
Var(Sn) =

1

n2

n∑
i=1

Var(Xi) ≤
c

n
→ 0

Therefore, Sn

n

2−→ µ.

Remark 7.13.1. From this theorem, we can immediately conclude that(
Sn

n

2−→ µ

)
=⇒

(
Sn

n

P−→ µ

)

Remark 7.13.2. Note that in the i.i.d. case, the existence of variance is not required.

There are numerous applications of the Weak Law of Large Numbers.

Example 7.2. (Bernstein Approximation) Let f be a continuous function on [0, 1], and define

fn(x) =

n∑
m=0

(
n

m

)
xm(1− x)n−mf

(m
n

)
. (Bernstein Polynomial)

We aim to show that as n→ ∞,
sup

x∈[0,1]

|fn(x)− f(x)| → 0.

Remark 7.13.3. Let x ∈ [0, 1]. To better approach this question, we can let X1,x, X2,x, · · · , Xn,x ∼ Bern(x) be i.i.d. random
variables. Let Sn,x =

∑n
i=1Xi,x ∼ Bin(n, x).

P(Sn,x = m) =

(
n

m

)
xm(1− x)n−m,

fn(x) =
n∑

m=0

P(Sn,x = m)f
(m
n

)
= E

(
f

(
Sn,x

n

))
.

By the WLLN,
Sn,x

n

P−→ x.

Remark 7.13.4. (Continuous Mapping Theorem) Let f be a uniformly continuous function. For all ε > 0, there exists δε such
that

if

∣∣∣∣Sn,x

n
− x

∣∣∣∣ ≤ δε, then

∣∣∣∣f (Sn,x

n

)
− f(x)

∣∣∣∣ ≤ ε.

By the contrapositive,

P
(
ω ∈ Ω :

∣∣∣∣f (Sn,x(ω)

n

)
− f(x)

∣∣∣∣ > ε

)
≤ P

(
ω ∈ Ω :

∣∣∣∣Sn,x(ω)

n
− x

∣∣∣∣ > δε

)
→ 0.

From this, we conclude that f
(

Sn,x

n

)
P−→ f(x).

Note: For non-uniformly continuous functions, the analysis is more complex. Further research is recommended.
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Example 7.3. By establishing that f
(

Sn,x

n

)
P−→ f(x), and noting that there exists a constant M such that ∥f∥∞ ≤M (due to f

being continuous on [0, 1]), we have∣∣∣∣E(f (Sn,x

n

))
− f(x)

∣∣∣∣ ≤ E
∣∣∣∣f (Sn,x

n

)
− f(x)

∣∣∣∣ = E
(∣∣∣∣f (Sn,x

n

)
− f(x)

∣∣∣∣1∣∣∣Sn,x
n −x

∣∣∣≤δε

)
+ E

(∣∣∣∣f (Sn,x

n

)
− f(x)

∣∣∣∣1∣∣∣Sn,x
n −x

∣∣∣>δε

)
≤ ε+ 2MP

(∣∣∣∣Sn,x

n
− x

∣∣∣∣ > δε

)

sup
x∈[0,1]

∣∣∣∣E(f (Sn,x

n

))
− f(x)

∣∣∣∣ = ε+ 2M sup
x∈[0,1]

(
P
(∣∣∣∣Sn,x − nx

n

∣∣∣∣ > δε

))

≤ ε+ 2M sup
x∈[0,1]

(
E |Sn,x − nx|2

n2δ2ε

)
(Markov’s Inequality and Lyapunov’s Inequality)

≤ ε+ 2M sup
x∈[0,1]

(
Var(Sn,x)

n2δ2ε

)
= ε+ 2M sup

x∈[0,1]

(
x(1− x)

nδ2ε

)
(ESn,x = nx)

≤ ε+
M

2nδ2ε
.

lim sup
n→∞

sup
x∈[0,1]

∣∣∣∣E(f (Sn,x

n

))
− f(x)

∣∣∣∣ ≤ ε→ 0.

Therefore, we conclude that supx∈[0,1] |fn(x)− f(x)| → 0 as n→ ∞.

Example 7.4. (Borel’s Geometric Concentration) Let µn be the uniform probability measure on the n-dimensional cube [−1, 1]n.
Let H be a hyperplane that is orthogonal to a principal diagonal of [−1, 1] (H = (1, · · · , 1)⊥).
Let Hr = {x ∈ [−1, 1]n : dist(x : H) ≤ r}. Then for any given ε > 0, µn(Hε

√
n) → 1 as n→ ∞.

We can prove this by letting X1, X2, · · · ∼ U[−1, 1] be i.i.d. random variables and EXi = 0. Let X = (X1, X2, · · · , Xn).
For all B ∈ [−1, 1]n, µn(B) = P(X ∈ B) = P ◦X−1(B).

µn(Hε
√
n) = P(dist(X,H) ≤ ε

√
n)

= P
(
|⟨X, (1, · · · , 1)⟩|
∥(1, · · · , 1)∥2

≤ ε
√
n

)
= P

(∣∣∣∣∑n
i=1Xi

n

∣∣∣∣ ≤ ε

)
= P

(∣∣∣∣Sn

n
− EX1

∣∣∣∣ ≤ ε

)
→ 1 (WLLN)

We do not necessarily need to stick to a given sequence of random variables X1, X2, · · · in the Law of Large Numbers.

Theorem 7.14. (WLLN for Triangular Array) Let {Xn,j}1≤j≤n<∞ be a triangular array. Let Sn =
∑n

i=1Xn,i, µn = ESn and
σ2
n = Var(Sn). Suppose that for some sequence bn,

σ2
n

b2n
= E

(
Sn − µn

bn

)2

→ 0

Then we have
Sn − µn

bn

P−→ 0

Proof.

E
(
Sn − µn

bn

)2

=
Var(Sn)

b2n
→ 0

Therefore, Sn−µn

bn

2−→ 0 and thus Sn−µn

bn

P−→ 0.

Remark 7.14.1. We should choose bn that is no larger than ESn if possible.
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Example 7.5. (Coupon Collector’s Problem) Let X1, X2, · · · be i.i.d. uniform random variables on {1, 2, · · · , n}.
Let τnk = inf{m : |{X1, X2, · · · , Xm}| = k} be the waiting time for picking k distinct types.
What is the asymptotic behavior of τnn ?
It is easy to see that τn1 = 1. By convention, τn0 = 0.
For 1 ≤ k ≤ n, let Xn,k = τnk − τnk−1 be the additional waiting time for picking k distinct types when we have k − 1 types.
Notice that

τnn =

n∑
k=1

Xn,k

We know that

P(Xn,k = ℓ) =

(
k − 1

n

)ℓ−1(
1− k − 1

n

)
=⇒ Xn,k ∼ Geom

(
1− k − 1

n

)
We claim that Xn,k are independent for all k. For a constant c,

Eτnn =

n∑
k=1

EXn,k =

n∑
k=1

(
1− k − 1

n

)−1

=

n∑
m=1

n

m
∼ n log n

Var(τnn ) =

n∑
k=1

Var(Xn,k) =

n∑
k=1

((
1− k − 1

n

)−2

−
(
1− k − 1

n

)−1
)

≤
n∑

k=1

(
1− k − 1

n

)−2

=

n∑
m=1

n2

m2
≤ cn2

By WLLN, if we choose bn = n log n, then we have

Var(τnn )

b2n
→ 0 =⇒

τnn −
∑n

m=1
n
m

n log n

P−→ 0

Therefore,
τn
n

n logn

P−→ 1

Example 7.6. (An Occupancy Problem) r balls are put at random into n bins. All nr configurations are equally likely.
Let Ai be the event that the i-th bin is empty, and let Nn be the number of empty bins =

∑n
i=1 1Ai .

How can we prove that if r
n → c as n→ ∞,

Nn

n

P−→ e−c?

We can see that

ENn

n
=

1

n

n∑
i=1

E1Ai
= P(Ai) =

(
1− 1

n

)r

→ e−c,

Var(Nn) = E(N2
n)− (ENn)

2

= E

(
n∑

i=1

1Ai

)2

−

(
E

(
n∑

i=1

1Ai

))2

=

n∑
i=1

(P(A1)− (P(A1))
2) +

∑
i ̸=j

(P(Ai ∩Aj)− (P(A1))
2)

= n

((
1− 1

n

)r

−
(
1− 1

n

)2r
)

+ n(n− 1)

((
1− 2

n

)r

−
(
1− 1

n

)2r
)

= o(n2)

By using the WLLN, let bn = n,
Var(Nn)

b2n
→ 0 =⇒ Nn − ENn

n

P−→ 0

Therefore, Nn

n

P−→ e−c.
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7.3 Borel-Cantelli Lemmas

Let A1, A2, . . . be a sequence of events in (Ω,F). We are particularly interested in

lim sup
n→∞

An = {An i.o.} =
⋂
m

∞⋃
n=m

An

Theorem 7.15. (Borel-Cantelli Lemmas) For any sequence of events An ∈ F ,

1. (BCI) If
∑∞

n=1 P(An) <∞, then
P(An i.o.) = 0

2. (BCII) If
∑∞

n=1 P(An) = ∞ and An are independent, then

P(An i.o.) = 1

Proof.

1. If
∑∞

n=1 P(An) <∞,

P(An i.o.) = lim
m→∞

P

( ∞⋃
n=m

An

)
≤ lim

m→∞

∞∑
n=m

P(An) = 0

2. If
∑∞

n=1 P(An) = ∞ and An are independent, we have

P

( ∞⋃
m=1

∞⋂
n=m

A∁
n

)
= lim

m↑∞
P

( ∞⋂
n=m

A∁
n

)
= lim

m↑∞
lim
r↑∞

P

(
r⋂

n=m

A∁
n

)
= lim

m↑∞
lim
r↑∞

r∏
n=m

P(A∁
n) = lim

m↑∞

∞∏
n=m

(1− P(An))

≤ lim
m↑∞

∞∏
n=m

e−P(An) = lim
m↑∞

exp

(
−

∞∑
n=m

P(An)

)
= 0 (1− x ≤ e−x if x ≥ 0)

P(An i.o.) = P

( ∞⋂
m=1

∞⋃
n=m

An

)
= 1− P

( ∞⋃
m=1

∞⋂
n=m

A∁
n

)
= 1

Remark 7.15.1. BCII can be considered a partial converse of BCI.

Remark 7.15.2. i.o. stands for ”infinitely often,” while f.o. stands for ”finitely often.”

We will now explore applications of the Borel-Cantelli Lemmas.

Example 7.7. (Infinite Monkey Problem) Assume there is a keyboard with N keys, each representing a distinct letter. Given a
string of letters S of length m, a monkey randomly hits any key at each round.
How can we prove that, almost surely, the monkey will type the given string S infinitely many times?
Let Ek be the event that the m-string S is typed starting from the k-th hit. Note that Ek are not independent.
To produce an independent sequence, consider Emk+1, where each string is m letters apart from the next.
For any i, P(Ei) =

(
1
N

)m
. By BCII,

∞∑
k=0

P(Emk+1) = ∞ =⇒ P(Emk+1 i.o.) = 1

Therefore, P(Ek i.o.) = 1.
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Recall that if Xn
P−→ X, there exists a non-random increasing sequence of integers n1, n2, . . . such that Xni

a.s.−−→ X as i→ ∞.
We can use the Borel-Cantelli Lemmas to prove a similar theorem.

Theorem 7.16. Xn
P−→ X if and only if for all subsequences Xn(m), there exists a further subsequence

Xn(mk)
a.s.−−→ X

Proof.

(=⇒) Let εk be a sequence of positive numbers such that εk ↓ 0 as k ↑ ∞. For any k, there exists an n(mk) > n(mk−1) such
that

P(
∣∣Xn(mk) −X

∣∣ > εk) ≤ 2−k (Xn
P−→ X)

Since
∑∞

k=1 P(
∣∣Xn(mk) −X

∣∣ > εk) <∞, by BCI,

P(
∣∣Xn(mk) −X

∣∣ > εk i.o.) = 0 P(
∣∣Xn(mk) −X

∣∣ > εk f.o.) = 1

For all ε > 0, εk ≤ ε for all k ≥ k0. If εk ≤ ε,

{
∣∣Xn(mk) −X

∣∣ > εk} ⊇ {
∣∣Xn(mk) −X

∣∣ > ε}

If ω ∈ {
∣∣Xn(mk) −X

∣∣ > εk} for finitely many k, then ω ∈ {
∣∣Xn(mk) −X

∣∣ > ε} for finitely many k. Therefore, for all
ε > 0

P(
∣∣Xn(mk) −X

∣∣ > ε i.o.) = 0

(⇐=) For all ε > 0, let an = P(|Xn −X| > ε).

For all n(m), there exists n(mk) such that Xn(mk)
a.s.−−→ X. We have

(Xn(mk)
a.s.−−→ X) =⇒ (Xn(mk)

P−→ X) =⇒ an(mk) → 0

Therefore, for any an and an(m), there exists further an(mk) → 0.

We have an → 0 =⇒ (Xn
P−→ X).

We have a theorem that has conditions quite similar to the Law of Large Numbers. However, notice that E |X1| = ∞ here.

Theorem 7.17. If X1, X2, · · · are i.i.d. random variables with E |Xi| = ∞. Then

P(|Xn| ≥ n i.o.) = 1

Let Sn =
∑n

i=1Xi. Then

P
(

lim
n→∞

Sn

n
exists in (−∞,∞)

)
= 0

Proof.

E |X1| =
∫ ∞

0

P(|X1| > t) dt ≤
∞∑

n=0

P(|X1| > n)

Since {|Xn| > n} is a collection of independent events, by BCII, P(|Xn| > n i.o.) = 1.

For the second statement, let C = {ω ∈ Ω : limn→∞
Sn(ω)

n exists in R}.
Assume that ω ∈ C, then

Sn(ω)

n
− Sn+1(ω)

n+ 1
=

Sn(ω)

n(n+ 1)
− Xn+1(ω)

n+ 1

Since Sn

n converges, Sn(ω)
n − Sn+1(ω)

n+1 → 0 and Sn(ω)
n(n+1) → 0. We get that Xn+1(ω)

n+1 → 0.

However, that means |Xn+1| < n+ 1 for an arbitrary large n. Therefore, ω ̸∈ {|Xn| ≥ n i.o.}.
From that, we get that P(C) = 0 since P(|Xn| ≥ n i.o.) = 1.
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The next result extends BCII.

Theorem 7.18. If A1, A2, · · · are pairwise independent and
∑∞

n=1 P(An) = ∞, then as n→ ∞,∑n
m=1 1Am∑n

m=1 P(Am)

a.s.−−→ 1

Proof.
Let Xn = 1An , Sn =

∑n
i=1Xi and ESn =

∑n
m=1 P(Am).

Notice that pairwise independence is already enough for cov(Xi, Xj) = 0 for all i ̸= j.
Using Markov’s inequality, for any ε > 0, we get as n→ ∞

P
(∣∣∣∣Sn − ESn

ESn

∣∣∣∣ > ε

)
≤ E(Sn − ESn)

2

ε2(ESn)2
=

Var(Sn)

ε2(ESn)2
=

n∑
m=1

Var(1Am)

ε2(ESn)2
=

n∑
m=1

E1Am

ε2(ESn)2
=

1

ε2ESn
→ 0

Therefore, we get that Sn−ESn

ESn

P−→ 0.

Now, we can choose a desirable subsequence to prove almost surely convergence. Let nk = inf{n : ESn ≥ k2}.
We can get that ESnk

≥ k2 and ESnk
= ESnk−1 + E1Ank

< k2 + 1. Again by Markov’s inequality,

∞∑
k=1

P
(∣∣∣∣Snk

− ESnk

ESnk

∣∣∣∣ > ε

)
≤

∞∑
k=1

1

ε2ESnk

≤
∞∑
k=1

1

ε2(k2 + 1)
<∞

By BCI, we have that as k → ∞,

Snk

ESnk

a.s.−−→ 1 P
(
Snk

ESnk

→ 1 as k → ∞
)

= 1

Let C = {ω ∈ Ω :
Snk

(ω)

ESnk
→ 1 as k → ∞}. For ω ∈ C, for all nk ≤ n < nk+1, we have Snk

(ω) ≤ Sn(ω) ≤ Snk+1
(ω).

Snk
(ω)

ESnk+1
≤ Sn(ω)

ESn
≤ Snk+1(ω)

ESnk

Since
Snk

(ω)

ESnk+1
=

Snk
(ω)

ESnk

(
ESnk

ESnk+1

)
→ 1 and

Snk+1(ω)

ESnk+1
=

Snk+1(ω)

ESnk+1

(
ESnk+1

ESnk

)
→ 1, we get that for any ω ∈ C,

Sn(ω)

ESn
→ 1

Therefore, we have

P
(
Sn

ESn
→ 1

)
≥ P

(
Snk

ESnk

→ 1 as k → ∞
)

= 1

As a result, we get that
Sn

ESn

a.s.−−→ 1

If the events A1, A2, · · · in the Borel-Cantelli Lemmas are independent, then P(A) is either 0 or 1 depending on whether
∑

P(An)
converges. The following is a simple version.

Theorem 7.19. (Borel Zero-one Law) Let A1, A2, · · · ∈ F and A = σ(A1, A2, · · · ). Suppose that

1. A ∈ A

2. A is independent with any finite collection of A1, A2, · · ·

Then P(A) = 0 or 1.

Proof (Non-rigorous).
Suppose that A1, A2, · · · are independent. Let A = lim supnAn.
We know that A =

⋂∞
m=1

⋃∞
n=mAn. Therefore, A ∈ A = σ(A1, A2, · · · ).

For all k, we can also have A =
⋂∞

m=k+1

⋃∞
n=mAn. Therefore, A is independent with any Ai ∈ σ(A1, A2, · · · , Ak).

Setting k → ∞, we have that A is independent of all elements in A, which also include itself.
Therefore, P(A) = P(A ∩A) = (P(A))2 =⇒ P(A) = 0 or 1.
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Let X1, X2, · · · be a collection of random variables. For any subcollection {Xi : i ∈ I}, write σ(Xi : i ∈ I) for the smallest σ-field
with reference to which each of Xi is measurable.

Definition 7.20. Let Hn = σ(Xn+1, Xn+2, · · · ). We have Hn ⊇ Hn+1 ⊇ · · · . Tail σ-field is defined as

H∞ =
⋂
n

Hn

Remark 7.20.1. If E ∈ H∞, then E is called tail event.

Example 7.8. {lim supn→∞Xn = ∞} is a tail event.

Example 7.9. {
∑

nXn converges} is a tail event.

Example 7.10. {
∑

nXn converges to 1} is not a tail event.

We get another version of zero-one law.

Theorem 7.21. (Kolmogorov’s zero-one law) If H ∈ H∞, then P(H) = 0 or 1.

We continue to explore more into tail events.

Definition 7.22. We define tail function to be Y : Ω → R∪{−∞,∞}, which is a generalized random variables that is a function
of X1, X2, · · · . It is independent of any finite collection of Xi’s and is H∞-measurable.

Example 7.11. Let Y (ω) = lim supn→∞Xn(ω) for all ω ∈ Ω. FY (y) = P(Y ≤ y) = 0 or 1 for all y ∈ R ∪ {−∞,∞}.
{Y ≤ y} is a tail event.

Theorem 7.23. If Y is a tail function of independent sequence of random variables X1, X2, · · · , then there exists −∞ ≤ k ≤ ∞,

P(Y = k) = 1

Again let X1, X2, · · · be i.i.d. random variables and let Sn =
∑n

i=1Xi.
Recall that if E |X1| <∞,

P
(

lim
n→∞

Sn

n
= EX1

)
= 1

If E |X1| = ∞,

P
(

lim
n→∞

Sn

n
exists

)
= 0

Using tail function, the random variables are not necessarily identically distributed.

Theorem 7.24. Let X1, X2, · · · be independent random variables. Let Sn =
∑n

i=1Xi. Then

P
(

lim
n→∞

Sn

n
exists

)
= 0 or 1

Proof.
Let Z1 = lim supn→∞

Sn

n and Z2 = lim infn→∞
Sn

n . We claim that both Z1 and Z2 are tail functions of Xi’s. For any k,

Z1(ω) = lim sup
n→∞

(
1

n

k∑
i=1

Xi(ω) +
1

n

n∑
i=k+1

Xi(ω)

)
Z2(ω) = lim inf

n→∞

(
1

n

k∑
i=1

Xi(ω) +
1

n

n∑
i=k+1

Xi(ω)

)

Therefore, both Z1 and Z2 do not depend on any finite collection of Xi. We say that {Z1 = Z2} is a tail event.
Therefore, by Kolmogorov’s zero-one law.

P
(

lim
n→∞

Sn

n
exists

)
= P(Z1 = Z2) = 0 or 1
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Example 7.12. (Random power series) Let X1, X2, · · · be i.i.d. exponential random variables with parameter λ = 1. We consider
a random power series

p(z;ω) =

∞∑
n=0

Xn(ω)z
n

The formula for radius of convergence is

R(ω) =
1

lim supn→∞ |Xn(ω)|
1
n

We can get that R(ω) is a tail function of Xi’s. Therefore, there exists C such that P(R = C) = 1 (R = C almost surely)
We want to find the value of C.
We claim that C = 1.

P
(
lim sup
n→∞

|Xn|
1
n = 1

)
= 1

It suffices to show that for all ε > 0,

P
(
lim sup
n→∞

|Xn|
1
n ≤ 1 + ε

)
= 1 P

(
lim sup
n→∞

|Xn|
1
n ≥ 1− ε

)
= 1

We first prove the first one.

∞∑
n=1

P
(
|Xn|

1
n > 1 + ε

)
=

∞∑
n=1

P(|Xn| > (1 + ε)n) =

∞∑
n=1

e−(1+ε)n <∞

Therefore, by BCI,

P(|Xn|
1
n > 1 + ε i.o.) = 0 =⇒ P

(
lim sup
n→∞

|Xn|
1
n ≤ 1 + ε

)
= 1

Similarly,
∞∑

n=1

P
(
|Xn|

1
n > 1− ε

)
=

∞∑
n=1

P(|Xn| > (1− ε)n) =

∞∑
n=1

e−(1−ε)n = ∞

Therefore, by BCII,

P(|Xn|
1
n > 1− ε i.o.) = 1 =⇒ P

(
lim sup
n→∞

|Xn|
1
n ≥ 1− ε

)
= 1

By sending ε ↓ 0, we get

P
(
lim sup
n→∞

|Xn|
1
n = 1

)
= 1

Therefore, C = 1.

7.4 Strong Law of Large Numbers

Let us revisit the Weak Law of Large Numbers (WLLN). Consider X1, X2, . . . as a sequence of i.i.d. random variables with E(X1) = µ.
Define Sn =

∑n
i=1Xi. Then, as n→ ∞,

Sn

n

D−→ µ
Sn

n

P−→ µ

The Strong Law of Large Numbers (SLLN) is a more robust version of WLLN. Below, we prove one version of SLLN.

Theorem 7.25. (Strong Law of Large Numbers [SLLN]) Let X1, X2, . . . be i.i.d. random variables with EX1 = µ and
E |X1| <∞. Define Sn =

∑n
i=1Xi. Then,

Sn

n

a.s.−−→ µ

Note that the proof of SLLN is intricate and will not be covered here. Instead, we present a simpler version of SLLN.
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Theorem 7.26. (SLLN with EX4
i < ∞) Let X1, X2, . . . be i.i.d. random variables with EX1 = 0 and E(X4

1 ) < ∞. Define
Sn =

∑n
i=1Xi. Then,

Sn

n

a.s.−−→ 0

Proof.

ES4
n = E

(
n∑

i=1

Xi

)4

=

n∑
i,j,k,ℓ=1

EXiXjXkXℓ

The expectation is non-zero only if there are two pairs of random variables with identical values.

ES4
n = 3

∑
i ̸=j

EX2
i EX2

j +
∑
i

EX4
i = O(n2)

P
(∣∣∣∣Sn

n

∣∣∣∣ ≥ ε

)
≤ ES4

n

(nε)4
= O

(
1

n2

)
Consequently, for all ε > 0,

∞∑
n=1

P
(∣∣∣∣Sn

n

∣∣∣∣ > ε

)
<∞

Thus, Sn

n

a.s.−−→ 0.

Theorem 7.27. (SLLN with EX2
1 < ∞) Let X1, X2, . . . be i.i.d. random variables with EX2

1 < ∞ and EXi = µ. Define
Sn =

∑n
i=1Xi. Then,

Sn

n

2−→ µ
Sn

n

a.s.−−→ µ

Proof.
We first demonstrate convergence in mean square. Since EX2

1 <∞, as n→ ∞,

E
(
Sn

n
− µ

)2

=
E(Sn − nµ)2

n2
=

Var(Sn)

n2
=

Var(X1)

n
→ 0

For almost sure convergence, we know that convergence in probability implies the existence of almost sure convergence for some
subsequence of Sn

n to µ. Let ni = i2. Using Markov’s inequality, for all ε > 0,

∑
i

P

(∣∣Si2 − i2µ
∣∣

i2
> ε

)
≤
∑
i

E
∣∣Si2 − i2µ

∣∣2
i4ε2

=
∑
i

Var(Si2)

i4ε2
=
∑
i

Var(X1)

i2ε2
<∞

Therefore,
Si2

i2
a.s.−−→ µ. However, we need to address the gaps.

Assume Xi are non-negative. Then Si2 ≤ Sn ≤ S(i+1)2 if i2 ≤ n ≤ (i+ 1)2.
We can deduce that

Si2

(i+ 1)2
≤ Sn

n
≤
S(i+1)2

i2

Since
Si2

i2
a.s.−−→ µ, and i2

(i+1)2 → 1 as i→ ∞, we conclude that for non-negative Xi, as n→ ∞,

Sn

n

a.s.−−→ µ

For general Xi, we can write Xn = X+
n −X−

n where

X+
n (ω) = max{Xn(ω), 0} X−

n (ω) = −min{Xn(ω), 0}

Both X+
n (ω) and X−

n (ω) are non-negative.
Furthermore, X+

n ≤ |Xn| and X−
n ≤ |Xn|. Thus, E(X+

n )2 <∞ and E(X−
n )2 <∞. By the earlier conclusion for non-negative random

variables, we find that as n→ ∞,

Sn

n
=

1

n

(
n∑

i=1

X+
i −

n∑
i=1

X−
i

)
a.s.−−→ EX+

1 − EX−
1 = EX1

Therefore, Sn

n

a.s.−−→ µ.
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Why do we need SLLN? There are a lot of applications that specifically need SLLN.

Example 7.13. (Renewal Theory) Assume that we have a light bulb. We change it immediately when it burnt out.
Let Xi be the lifetime of i-th bulb and Tn = X1 +X2 + · · ·+Xn be the time to replace the n-th bulb.
Let Nt = sup{n : Tn ≤ t} be number of bulbs that have burnt out by time t. TNt

is the exact time that Nt’s bulb burnt out.
Since we are dealing with practical bulb, assume that X1, X2, · · · are i.i.d. random variables with 0 < Xi <∞ and EX1 <∞.

Theorem 7.28. Let EX1 = µ. As t→ ∞,
t

Nt

a.s.−−→ µ

Proof.
Since TNt

≤ t < TNt+1,
TNt

Nt
≤ t

Nt
<

TNt+1

Nt + 1

(
Nt + 1

Nt

)
By SLLN, we know that Tn

n

a.s.−−→ µ. Since Tn

n and
TNt

Nt
are the same sequence, we get that

TNt

Nt

a.s.−−→ µ
TNt+1

Nt + 1

a.s.−−→ µ

For all ω ∈ Ω, t < TNt+1 = X1(ω) +X2(ω) + · · ·+XNt(ω)+1(ω).

As t→ ∞, it forces Nt(ω) → ∞. Therefore, Nt+1
Nt

a.s.−−→ 1. Combining all of this, we get t
Nt

a.s.−−→ µ.

Claim 7.28.1. If Xn
P−→ X∞, then Nm

a.s.−−→ ∞ as m→ ∞.

Remark 7.28.1. For this claim, it is not necessary that XNm

a.s−−→ X∞ or XNm

P−→ X∞.

Example 7.14. Recall the example that we use in Theorem 7.9 to prove (Xn
P−→ X) ≠⇒ (Xn

a.s.−−→ X). Let Ω = [0, 1]. Let

Ym,k = 1Im,k
=

{
1, ω ∈

[
k−1
m , k

m

]
0, Otherwise

Let Xn be the enumeration of Ym,k. i.e. X1 = Y1,1, X2 = Y2,1, X3 = Y2,2, · · · .
From the proof of the theorem, we got that Xn

P−→ X∞ = 0 but Xn ̸a.s.−−→ X∞.
For each ω ∈ Ω, and each m ≥ 1, there exists k such that ω ∈

[
k−1
m , k

m

]
. We denote these as km(ω).

Let Nm(ω) =
∑m−1

i=1 i+ km(ω). We get that XNm(ω)(ω) = Ym,km(ω)(ω) = 1.

However, X∞ = 0. That means, XNm
̸P−→ X∞ and XNm

̸a.s.−−→ X∞.

We move to our next examples, which is the Glivenko-Cantelli Theorem. It is also called the Fundamental Theorem of Statistics.

Theorem 7.29. (Glivenko-Cantelli Theorem) Assume that X ∼ F (x) where F (x) is unknown. Let X1, X2, · · · be i.i.d. random
samples of X. We define the empirical distribution function, which is also a distribution function of a histogram.

FN (x) =
1

N

N∑
i=1

1Xi≤x FN (x;ω) =
1

N

N∑
i=1

1Xi(ω)≤x

We have that
sup
x

|Fn(x)− F (x)| a.s.−−→ 0

Proof.
We only proof for the case when F (x) is continuous.
For each m, there exists −∞ = x0 < x1 < · · · < xm = ∞ such that F (xi)− F (xi−1) =

1
m .

For all x ∈ [xi−1, xi),

FN (x)− F (x) ≤ FN (xi)− F (xi−1) = FN (xi)− F (xi) +
1

m

FN (x)− F (x) ≥ FN (xi−1)− F (xi) = FN (xi−1)− F (xi−1)−
1

m

From this, we get

− sup
i

|FN (xi)− F (xi)| −
1

m
≤ FN (x)− F (x) ≤ sup

i
|FN (xi)− F (xi)|+

1

m
=⇒ sup

x
|FN (x)− F (x)| ≤ sup

i
|FN (xi)− F (xi)|+

1

m
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By SLLN, when we fix x, we get

FN (x) =
1

N

N∑
i=1

1Xi≤x
a.s.−−→ E1X1≤x = P(X1 ≤ x) = F (x) P({ω ∈ Ω : FN (x;ω) → F (x) as N → ∞}) = 1

Let Cx = {ω ∈ Ω : FN (x;ω) → F (x) as N → ∞}. Notice that if ω ∈
⋂∞

i=1 Cxi
, supi |FN (xi;ω)− F (xi)| → 0.

lim sup
N

sup
x

|FN (x)− F (x)| ≤ 1

m

If ω ∈
⋂∞

m=1

⋂m
i=1 Cxi

,
lim sup

N
sup
x

|FN (x)− F (x)| = 0

Therefore, since
⋂∞

m=1

⋂m
i=1 Cxi

⊆ {ω ∈ Ω : supx |FN (x;ω)− F (x)| → 0 as N → ∞} and P(Cxi
) = 1 by SLLN,

P({ω ∈ Ω : sup
x

|FN (x;ω)− F (x)| → 0 as N → ∞}) = 1

We will end here. Of course, there are still a lot of examples that we haven’t explored (including some mentioned during the lectures
that I’m too lazy to include here). We also skipped a lot of proofs in some of the theorems. It is up to you to explore further, either
in other courses or in the future world of mathematics.



Appendix A

Random walk

Example A.1. (Simple random walk) Consider a particle moving along the real line. At each step, it moves either one unit to
the right with probability p or one unit to the left with probability q = 1− p.
Let Sn represent the particle’s position after n steps, with S0 = a. Then:

Sn = a+

n∑
i=1

Xi

where X1, X2, . . . are independent random variables taking the value 1 with probability p and −1 with probability q.
The random walk is called symmetric if p = q = 1

2 .

Lemma A.1. A simple random walk has the following properties:

1. It is spatially homogeneous: P(Sn = j|S0 = a) = P(Sn = j + b|S0 = a+ b).

2. It is temporally homogeneous: P(Sn = j|S0 = a) = P(Sm+n = j|Sm = a).

3. It satisfies the Markov property: P(Sm+n = j|S0, S1, . . . , Sm) = P(Sm+n = j|Sm), n ≥ 0.

Proof.

1. P(Sn = j|S0 = a) = P(
∑n

i=1Xi = j − a) = P(Sn = j + b|S0 = a+ b).

2.

P(Sn = j|S0 = a) = P

(
n∑

i=1

Xi = j − a

)
= P

(
m+n∑

i=m+1

Xi = j − a

)
= P(Sm+n = j|Sm = a).

3. If Sm is known, the distribution of Sm+n depends only on Xm+1, Xm+2, . . . , Xm+n, and is independent of S0, S1, . . . , Sm−1.

Example A.2. (Probability via sample path counting) Define a sample path s⃗ = (s0, s1, . . . , sn) as the outcome or realization
of the random walk, where s0 = a and si+1 − si = ±1.

P((S0, S1, . . . , Sn) = (s0, s1, . . . , sn)) = prqℓ, r = #{i : si+1 − si = 1}, ℓ = #{i : si+1 − si = −1}.

Example A.3. Let Mr
n(a, b) denote the number of paths (s0, s1, . . . , sn) with s0 = a, sn = b, and exactly r steps to the right.

P(Sn = b) =
∑
r

Mr
n(a, b)p

rqn−r.

Using the equations r + ℓ = n and r − ℓ = b− a, we find r = 1
2 (n+ b− a) and ℓ = (n− b+ a). If 1

2 (n+ b− a) ∈ {0, 1, . . . , n},

P(Sn = b) =

(
n

1
2 (n+ b− a)

)
p

1
2 (n+b−a)q

1
2 (n−b+a).

Otherwise, P(Sn = b) = 0.
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Theorem A.2. (Reflection principle) Let Nn(a, b) represent the number of possible paths from (0, a) to (n, b), and let N0
n(a, b)

denote the number of such paths that pass through some point (k, 0) on the x-axis. If a, b > 0, then:

N0
n(a, b) = Nn(−a, b).

Proof.
Each path from (0,−a) to (n, b) intersects the x-axis at some earliest point (k, 0).
Reflect the segment of the path with 0 ≤ x ≤ k across the x-axis to obtain a path joining (0, a) to (n, b) that intersects the x-axis.
This operation establishes a one-to-one correspondence between these collections of paths.

Lemma A.3.

Nn(a, b) =

(
n

1
2 (n+ b− a)

)
.

Proof.
Consider a path from (0, a) to (n, b), and let α and β represent the number of positive and negative steps, respectively.
Then α+ β = n and α− β = b− a, which implies α = 1

2 (n+ b− a).
The number of such paths corresponds to the number of ways to choose α positive steps from n available steps. Thus,

Nn(a, b) =

(
n

α

)
=

(
n

1
2 (n+ b− a)

)
.

Example A.4. We aim to determine the probability that the walk does not revisit its starting point during the first n steps.
Without loss of generality, assume S0 = 0, so that S1, S2, . . . , Sn ̸= 0 if and only if S1S2 · · ·Sn ̸= 0.
The event S1S2 · · ·Sn ̸= 0 occurs if and only if the path of the walk does not intersect the x-axis during the interval [1, n].
If b > 0, the first step must be (1, 1). By Lemma A.3 and the Reflection Principle, the number of such paths is:

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

=

(
n− 1

1
2 (n+ b− 2)

)
−
(

n− 1
1
2 (n+ b)

)
=

(
n+ b

2n
− n− b

2n

)(
n

1
2 (n+ b)

)
=
b

n

(
n

1
2 (n+ b)

)
.

There are 1
2 (n+ b) rightward steps and 1

2 (n− b) leftward steps. Therefore,

P(S1S2 · · ·Sn ̸= 0, Sn = b) =
b

n
Nn(0, b)p

1
2 (n+b)q

1
2 (n−b) =

b

n
P(Sn = b).

Example A.5. Let Mn = max{Si : 0 ≤ i ≤ n} denote the maximum value attained by the random walk up to time n. Suppose
S0 = 0, so Mn ≥ 0. Clearly, Mn ≥ Sn.

Theorem A.4. Suppose S0 = 0. Then, for r ≥ 1,

P(Mn ≥ r, Sn = b) =

P(Sn = b), if b ≥ r(
q
p

)r−b

P(Sn = 2r − b), if b < r.

Consequently, for r ≥ 1,

P(Mn ≥ r) = P(Sn ≥ r) +

r−1∑
b=−∞

(
q

p

)r−b

P(Sn = 2r − b) = P(Sn = r) +

∞∑
c=r+1

(
1 +

(
q

p

)c−r
)
P(Sn = c).

For the symmetric case where p = q = 1
2 ,

P(Mn ≥ r) = 2P(Sn ≥ r + 1) + P(Sn = r).
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Proof.
Assume r ≥ 1 and b < r. Let Nr

n(0, b) denote the number of paths from (0, 0) to (n, b) that include at least one point with height r
(i.e., some point (i, r) with 0 < i < n).
For a path π, let (iπ, r) be the earliest such point.
Reflect the segment of the path with iπ ≤ x ≤ n across the line y = r to obtain a path π′ joining (0, 0) to (n, 2r − b).
Thus, Nr

n(0, b) = Nn(0, 2r − b).

P(Mn ≥ r, Sn = b) = Nr
n(0, b)p

1
2 (n+b)q

1
2 (n−b) =

(
q

p

)r−b

Nn(0, 2r − b)p
1
2 (n+2r−b)q

1
2 (n−2r+b) =

(
q

p

)r−b

P(Sn = 2r − b).
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Appendix B

Terminologies in other fields of mathematics

Definition B.1. The supremum of a subset S is the smallest upper bound x such that x ≥ a for all a ∈ S. It is denoted as:

x = supS

Definition B.2. The infimum of a subset S is the greatest lower bound x such that x ≤ b for all b ∈ S. It is denoted as:

x = inf S

Definition B.3. The limit superior and limit inferior of a sequence x1, x2, . . . are defined as:

lim sup
n→∞

xn = lim
n→∞

sup
m≥n

xm, lim inf
n→∞

xn = lim
n→∞

inf
m≥n

xm.

Definition B.4. An infinite series
∑∞

n=0 an is absolutely convergent if there exists a real number L such that:

∞∑
n=0

|an| = L.

Rearranging or grouping terms in an absolutely convergent series does not change its sum.
A series is conditionally convergent if it converges but does not satisfy the condition of absolute convergence.

Definition B.5. (Monotonicity) A monotonic function is one that is either entirely non-increasing or entirely non-decreasing.
A strictly monotonic function is one that is either entirely strictly increasing or strictly decreasing.

Definition B.6. The arguments of the maxima are the input values at which a function achieves its maximum output. It is
defined as:

argmax
x∈S

f(x) = {x ∈ S : f(x) ≥ f(s) for all s ∈ S}.

Definition B.7. The arguments of the minima are the input values at which a function achieves its minimum output. It is
defined as:

argmin
x∈S

f(x) = {x ∈ S : f(x) ≤ f(s) for all s ∈ S}.

Definition B.8. (Linearity) A linear function f satisfies the following two properties:

1. f(x+ y) = f(x) + f(y).

2. f(ax) = af(x) for all a.

Definition B.9. A regular function f satisfies the following conditions:

1. It is single-valued (each input in the domain maps to exactly one output).

2. It is analytic (f can be expressed as a convergent power series).
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Definition B.10. Let V be the space of all real functions on [0, 1]. A norm ∥·∥ : V → R of a function f satisfies:

1. ∥f∥ ≥ 0 for all f ∈ V .

2. If ∥f∥ = 0, then f = 0.

3. ∥af∥ = |a| ∥f∥ for all f ∈ V and a ∈ R.

4. (Triangle inequality) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ V .

The Lp norm for p ≥ 1 is defined as:

∥f∥p =

(∫ 1

0

|f(x)|p dx
) 1

p

.

The infinity norm of a function f ∈ V is defined as:

∥f∥∞ = max
0≤x≤1

|f(x)| .

Definition B.11. Two functions f and g are asymptotically equivalent (f ∼ g) if and only if:

lim
x→∞

f(x)

g(x)
= 1.



Appendix C

Some useful inequalities

Theorem C.1. (Triangle inequality) Let X and Y be random variables. Then:

|X + Y | ≤ |X|+ |Y | .

Theorem C.2. (Reverse triangle inequality) Let X and Y be random variables. Then:

|X − Y | ≥ ||X| − |Y || .

Theorem C.3. (Cauchy-Schwarz inequality) Let X and Y be random variables. Then:

|E(XY )|2 ≤ E(X2)E(Y 2).

Theorem C.4. (Covariance inequality) Let X and Y be random variables. Then:

|cov(X,Y )|2 ≤ Var(X)Var(Y ).

Theorem C.5. (Markov’s inequality) Let X be a random variable with a finite mean. For all k > 0 and any non-negative function
γ that is increasing on [0,∞):

P(|X| ≥ k) ≤ E(γ(|X|))
γ(k)

.

Theorem C.6. (Chebyshev’s inequality) Let X be a random variable with EX = µ and Var(X) = σ2. For all k > 0:

P(|X − µ| ≥ kσ) ≤ 1

k2
.

Theorem C.7. (Hölder’s inequality) Let X and Y be random variables. For any p > 1, let q = p
p−1 . Then:

E |XY | ≤ (E |X|p)
1
p (E |Y |q)

1
q .

Theorem C.8. (Lyapunov’s inequality) Let X be a random variable. For all 0 < s ≤ r:

(E |X|s) 1
s ≤ (E |X|r) 1

r .

Theorem C.9. (Minkowski inequality) Let X and Y be random variables. For any r ≥ 1:

(E |X + Y |r) 1
r ≤ (E |X|r) 1

r + (E |Y |r) 1
r .

Theorem C.10. (Jensen’s inequality) Let X be a random variable and γ a convex function. Then:

γ(EX) ≤ E(γ(X)).

For better memorization:
Triangle inequality =⇒ Reverse triangle inequality
Markov’s inequality =⇒ Chebyshev’s inequality
Hölder’s inequality =⇒ Cauchy-Schwarz inequality =⇒ Covariance inequality

93



94 APPENDIX C. SOME USEFUL INEQUALITIES



Appendix D

Some other distributions

Example D.1. (Gamma distribution) X ∼ Γ(α, β)
A random variable X follows a gamma distribution with parameters α and β if:

f(x) =
xα−1e−βxβα

Γ(α)
, EX =

α

β
, Var(X) =

α

β2
, MX(t) =

(
1− t

β

)−α

, GX(t) =

(
1− it

β

)−α

,

where Γ(α) is the gamma function. If α is a positive integer, Γ(α) = (α− 1)!.

Example D.2. (Chi-squared distribution) Y ∼ χ2(k)
Suppose X1, X2, . . . , Xn are independent standard normal random variables. Let Y =

∑n
i=1X

2
i . Then Y follows a χ2-distribution

with parameter k if:

f(x) =


x

k
2
−1e−

x
2

2
k
2 Γ( k

2 )
, x ≥ 0,

0, x < 0,
EY = k, Var(Y ) = 2k, MY (t) = (1− 2t)−

k
2 , GY (t) = (1− 2it)−

k
2 .

95


	Events and their probabilities
	Fundamental terminologies
	Probability measure
	Conditional probability
	Independence
	Product space

	Random variables and their distribution
	Introduction of random variables
	CDF of random variables
	PMF / PDF of random variables
	JCDF of random variables

	Discrete random variables
	Introduction of discrete random variables
	Expectation of discrete random variables
	Conditional distribution of discrete random variables
	Convolution of discrete random variables

	Continuous random variables
	Introduction to Continuous Random Variables
	Expectation of continuous random variables
	Joint distribution function of continuous random variables
	Conditional distribution of continuous random variables
	Functions of continuous random variables

	Summary of Chapter 1-4
	Generating function
	Introduction of generating functions
	Applications of generating functions
	Expectation revisited
	Moment generating function and Characteristic function
	Inversion and continuity theorems
	Two limit theorems

	Markov chains (Skipped, read the book for reference)
	Convergence of Random Variables
	Modes of Convergence
	Other Versions of the Weak Law of Large Numbers
	Borel-Cantelli Lemmas
	Strong Law of Large Numbers

	Random walk
	Terminologies in other fields of mathematics
	Some useful inequalities
	Some other distributions

